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Abstract. Dobyns’ article suggests some reasons why orthodox statistics might be superior

to Bayesian statistics when discussing random event generator statistics. Several of his main

arguments are examined and discussed.

Introduction.
I became interested in this topic when, after joining the Society for Scientific Explo-

ration, I ordered the back issues of the Journal for Scientific Exploration and set about
reading them. While studying the paper of Jahn et. al. (1987) I noticed that it actually
provided a nice real-life example of the Jeffreys-Lindley paradox. It also made me ask
myself why, if the P-values from this research are so small, I had not been moved to regard
the psi hypothesis with more favor than I in fact did. This in turn led me to consider more
deeply questions of epistemology as viewed through a Bayesian microscope. Some of the
issues raised by Dobyns have led me to reexamine these questions, and I believe that the
following comments on Dobyns’ paper may help others to see these issues more clearly.

I offer the following comments in the spirit of constructive criticism, not negativism.
Of course, I cannot conceal my prior, nor do I wish to. I was and remain skeptical of the
reality of the paranormal. However, I think that I am typical of scientists who, while quite
skeptical, would be willing to change their minds if presented with compelling evidence.
Some notion of the kind of evidence that would be compelling, and of where I feel current
efforts fall short, are given below.

Choosing an appropriate prior.
Dobyns first investigates a family of priors that are uniform in an interval of width w

centered on p∆ = 0.5. He is following an idea of Lindley (1965, Section 5.6) and shows
that such priors approximately replicate the orthodox analysis in the sense that (for any
w that is sufficiently large to encompass most of the likelihood function), the Bayesian
100(1 − α)% credible interval will include the null only when α is about as small as the
classical P-value. But is a uniform prior appropriate to this problem? I contend that it
is not. Lindley’s idea assumes that we have no particular reason to favor one value of p
over another, which is surely not the case here. The PEAR equipment and protocol have
been designed to produce an exact 50% hit probability. I therefore have a substantial prior
belief in the null hypothesis, whereas Dobyns’ prior actually expresses a high degree of
skepticism about the null.

According to Dobyns, in the PEAR experiments the maximum artifactual deviation
from p∆ = 0.5 is 1.1 × 10−6. In using a uniform prior, with w = 10−3 (as suggested by
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Dobyns), one would be claiming to be quite certain a priori that the null is false (with
prior odds of about 1000 : 1 against the null in this case). This is hardly appropriate, if one
has a significant prior belief that the null might be true! Thus, while it may be possible to
construct a Bayesian analysis that gives similar results to the orthodox one, in this case it
is quite artificial because the prior does not agree with the actual prior of anyone except
a person who is already nearly certain that the null is false.

Only a prior that places a substantial proportion of its mass near the null p∆ = 0.5
can adequately represent the views of a person who has not already made up his mind
against the null; in the present case it is quite adequate to approximate this component
of the prior as a δ-function. Thus, a prior of the form π0(p) = aδ(p − 0.5) + (1 − a)f(p),
where f(p) is a function representing the prior on the alternative hypothesis, is the only
kind that can give due weight to a believable null hypothesis.

This is, of course, the answer to Shafer’s objection, that a diffuse prior is being treated
as evidence against the hypothesis in question. This is wrong. The diffuse prior expresses
skepticism, not about the hypothesis in question, but that any particular value of the
parameter p is the true value required by this hypothesis. But this is exactly what the
hypothesis p 6= 0.5 says! It, too, is skeptical about any particular value of p, instead
regarding p to be a “fudge factor” to be estimated from the data. This is at the heart of
the Jeffreys-Lindley paradox. If one has substantial reasons to believe in a particular value
of a parameter as against other values, a parameter-fitting prior that considers all values
to be about equally likely is inappropriate. The case considered here is no different from
many similar cases in science. For example, the theory of general relativity predicts a very
precise value, 43′′/century, for the perihelion advance of Mercury. Alternative theories
that were advanced by nineteenth century astronomers to explain the perihelion advance
all contained a “fudge factor” that allowed them to fit virtually any observed perihelion
advance. When an observed value turns out to be near the value precisely predicted by
a theory (as it did in this case), that theory automatically acquires an extra measure of
credibility relative to a theory that fits the observed value by resorting to a “fudge factor.”
Put another way, we want to fit the model to the data without overfitting it. When fitting
models, each additional parameter exacts a penalty that must be more than compensated
by the increased ability of the model to match the data. Bayesian probability theory allows
us to estimate the how big the penalty for adding an additional parameter is (Jeffreys 1939,
Bretthorst 1988, Gull 1988). Every scientist agrees with the principle that the number of
arbitrary parameters should be kept to a minimum, and that a theory that has fewer
parameters is ipso facto more credible than a theory with more parameters, even when the
theory with fewer parameters does not fit the data perfectly.

It has been known for some time that such considerations lead to a Bayesian justification
of Ockham’s razor. See Jaynes (1979), Smith and Spiegelhalter (1980), Gull (1988), Loredo
(1990), Berger and Jefferys (1991), Jefferys and Berger (1991), and MacKay (1991) for
discussions. In the PEAR experiments, the unknown value p plays the role of a “fudge
factor” that can be adjusted to fit any data compatible with the prior. As a consequence,
the hypothesis that some unknown, nonstatistical effect is causing the value of p to differ
from 0.5 is more complex than the null hypothesis that proposes that p = 0.5 to within
a very small error. Ockham’s razor tells us to favor the simpler theory; the Bayesian
calculation tells us just how much the evidence must disagree with the simpler theory
before it forces us to favor the more complex one. In this case, the answer is that even a
discrepancy of 3.614 standard deviations may not be large enough to force us to favor the
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more complex theory, when the effect size θ = |p− p∆|/p∆ is very small.
Whether the discrepancy is large enough to force us to reconsider the simpler hypothesis

depends on the width w one chooses for the prior on the alternative hypothesis. Dobyns
notes that there is a range of approximately 1000 in the Bayes factors against the alterna-
tive. The different values of w correspond to different degrees of specificity in the prior.
When w is large, the alternative hypothesis does not make a very specific prediction, and
is able to accomodate a wide variety of effect sizes θ without undue pain. Such hypotheses
are difficult to falsify on arbitrary data, and are also the least credible after the data are
taken. When w is small, the predictions made by the alternative hypothesis are specific,
more easily falsified, and therefore more credible. This is seen by the fact that the Bayes
factor against the alternative is larger when w is large than when it is small. Thus, Bayes’
theorem automatically takes into account the relative complexity or simplicity of the hy-
potheses (when measured in this way), balancing these against how well each hypothesis
agrees with the data. The rub is that one has to choose ones prior on the alternative before
looking at the new data. No cheating is allowed!

What are the consequences of assuming a prior that fairly represents real prior belief
in the null? Let us consider an extreme case that Dobyns also discusses. This case treats
both hypotheses symmetrically, by letting f(p) = δ(p − p0), where p0 = s/n is the value
of p that maximizes the likelihood function, and setting a = 0.5. Obviously, such a prior
is ridiculously favorable to the alternative hypothesis, since it is a maxim of Bayesian and
orthodox analysis alike that you should not choose your hypothesis to match the data you
have already collected. That would be like being allowed to place your bet after a horse
race was run. So this procedure gives us an absolute lower bound on the Bayes factor.
Dobyns does the calculation: the result is Bmin = 0.00146. As Dobyns notes, this is
already ten times larger than the (one-sided) P-value. I regard this as excellent evidence
that the P-value substantially overstates the significance of the PEAR result.

Statistical power.
Dobyns seeks to avoid this conclusion by bringing up the subject of statistical power.

Now there are a number of things that can be said about this. First, of course, statistical
power is itself an orthodox notion, and is not of much interest in itself to Bayesian analysis.
For one thing, it depends upon imagining an ensemble of identical experiments that have
not been run and considering the frequentist consequences of such experiments. Bayesians
regard such an ensemble mythical, and regard speculation based on data sets other than
the one actually observed to be vain. But there are other reasons for the Bayesian attitude
towards this issue that are not so philosophical.

The first is practical. Contra Dobyns, a major reason that Bayesians regard classical
P-values as misleading is that real-life experience shows that they are far more likely to
reject a point-null hypothesis that happens to be true than their small size would indicate
(Lee 1989, pp. 137-38), and that this tendency increases as n gets larger. It is for this
reason that Good and others have suggested adjusting P-values, if they must be used, by
various correction factors. It is clear that some adjustment, which deflates P-values for
large n, is required.

This point concerns the nature of P-values themselves. People used to orthodox thinking
are generally unaware that data-dependent P-values don’t even have a valid frequentist
interpretation. To quote Berger and Delampady (1987):

“A Neyman-Pearson error probability, α, has the actual frequentist interpretation
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that a long series of α level tests will reject no more than 100α% of true H0, but the
data-dependent P-values have no such interpretation. P-values do not even fit easily
into any of the conditional frequentist paradigms.”

Berger and Delampady (1987) give an example to illustrate this point. I paraphrase
their argument, which goes as follows:

Suppose that an astronomer hears that many users of statistics rejected null hypotheses
at the 5% level when z = 1.96 was observed. This astronomer has a typical file drawer
full of old experiments involving approximate point nulls, for which the truth eventually
became known. Suppose that overall, about half the point nulls turned out to be true, and
half false. Our astronomer decides to examine all the cases where the null was originally
rejected at or near the exact 5% level, say from z = 1.96 to z = 2.0. In this subset of tests,
where the null was just rejected at the 5% level, the astronomer would discover that the
null H0 would actually have turned out to be true about 30% of the time, which is a far
cry from the 5% rejection level.

Berger and Delampady then state the frequentist argument, that if we confine our
attention to the sequence of true H0, then in only 5% of all experiments would |z| ≥ 1.96.
This is true, they agree, but is not the answer we need. What we need to know is what
to think about the truth of H0 when we actually observe a particular value of z. In the
case of the PEAR data, the particular value z = 3.614 has been observed. The P-value is
0.0003, two sided, but as the Berger and Delampady gedanken experiment shows, among a
collection of typical experiments that resulted in P-values near 0.0003, the proportion for
which the null would actually have been true can be expected to be substantially larger
than 0.0003. Again, one is misled by naively looking at P-values.

What this means, of course, is that one cannot “up the ante” after the data are in by
choosing the exact P-value as the new rejection level. The proper classical procedure is to
choose the rejection level before looking at the data, and then to report either “acceptance”
or “rejection” at the predetermined significance level. One must be very careful when
interpreting data-dependent P-values.

This is, of course, closely related to a point that Harold Jeffreys made most forcefully
when he complained that when one employs tests based on tail-areas, one is rejecting the
null hypothesis not only because we happened to have observed an extreme value, but also
because we have not observed values that are even more extreme. By counting for the null
only that part of the tail area that is beyond the observed data, where the curve rapidly
approaches zero as exp(−z2/2), the tail-area test systematically underestimates the actual
amount of evidence for the null. I have not seen a satisfactory frequentist answer to his
comment (Jeffreys 1939, Section 7.2):

“If P is small, that means that there have been unexpectedly large departures from
prediction. But why should these be stated in terms of P? The latter gives the
probability of departures, measured in a particular way, equal to or greater than the
observed set, and the contribution from the actual value is nearly always negligible.
What the use of P implies, therefore, is that a hypothesis that may be true may be
rejected because it has not predicted observable results that have not occurred. This
seems a remarkable procedure.”

Jeffreys’ entire discussion of this point deserves careful reading. Fisher, late in life, came
to appreciate the force of Jeffreys’ argument. He wrote (Fisher 1956, p. 66),

“Objection has sometimes been made that the method of calculating Confidence
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Limits by setting an assigned value such as 1% on the frequency of observing 3 or
less (or at the other end of observing 3 or more) is unrealistic in treating the values
less than 3, which have not been observed, in exactly the same manner as the value
3, which is the one that has been observed. This feature is indeed not very defensible
save as an approximation” (emphasis added).

Fisher advocated using P-values to suggest interesting areas for future investigation,
but using the likelihood function for final analysis. Although he was opposed to Bayesian
ideas, it is interesting that he regarded the likelihood function as the firmest foundation for
statistical inference. From here it would be but a short step to adopting a fully Bayesian
position (although Fisher did not take this step).

Another important point to bear in mind is that when designing a test on frequentist
principles, one should choose the value of the parameter for which good power is desired
prior to seeing the data. Dobyns’ example, which compares the power of the orthodox
and Bayesian analyses, is based on his knowledge of the value of the parameter that the
data actually indicate (p = 0.5002). Dobyns intended this as a pedagogical example; it
should not be considered to be a full power analysis, for is not considered good practice to
choose the parameter value for the power analysis to be only that where the data ended
up. A full power analysis that considered a range of values of p consistent with the results
of other investigations would have shown that the Bayesian test in general has extremely
good power, although never as good as the classical test.

The final point is that the actual PEAR experiments have been conducted in a quasi-
sequential mode. That is, data are gathered for a while, then published. More data are
gathered and added to the growing data set. An new analysis is published, and so on.
It is guaranteed that if an experiment like this is carried on in a sequential fashion long
enough, then with probability 1 there will be occasions when the null hypothesis, even if it
is true, will be rejected by a classical test at any arbitrary P-value, no matter how small.
Dobyns says that the probability that a terminal Z score of 3.614 could have been attained
at any time in the program’s history is less than 0.007 (or 0.002 with a different set of
assumptions); this is somewhat comforting, but I still have misgivings, since it is based on
the same kind of tail-area calculation to which I object.

By contrast, a Bayesian would adopt a rejection criterion (reject the null if at some
point its posterior probability becomes less than p0, and reject the alternative if its posterior
probability becomes less than p1) (Berger 1985). Suppose that, unknown to him, the null
is actually true. The Bayesian will then have only a small probability of ever rejecting
the null, no matter how long he takes data. As a matter of general philosophy, I think
it prudent to rely on the safer, simpler Bayesian procedure, even at the price of giving
up some statistical power. If this requires the taking of a moderate amount of additional
data, so be it.

The need for priors.
The last major complaint that Dobyns lists is the fact that under different priors on the

alternative, the Bayesian analysis of these data gives a wide range of Bayes factors. This
is certainly true. Dobyns considers it an advantage that the classical analysis gives only
one answer.

Again, there are several responses to this. The first response is that the two-sided P-
value of 0.0003 from the classical analysis is misleading, as has been pointed out above. It is
not the probability that similar true null hypotheses would be rejected, for the reasons that
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Berger and Delampady (1987) give. Even with a ridiculously unrealistic prior that gives
every advantage to the alternative hypothesis, we have seen that one obtains a Bayes factor
that is at least ten times the P-value. Moreover, the Bayes factor has a straightforward
interpretation in terms of the probability of the two hypotheses, unlike the classical analysis
that tells us something that is irrelevant to the question we are asking. That the fact that
classical analysis gives only one answer is no advantage if that answer is misleading or
wrong.

Second, prior belief is important, even to orthodox statisticians. To illustrate this point,
consider the following variation on Fisher’s famous example of the tea-drinking lady (Fisher
1966, pp. 11-25). We consider three hypothetical experiments:

(1) You have a pack of alphabet cards, one card for each letter. You shuffle them
thoroughly and pick a card at random. You show it to a 6-year-old child, who
correctly names the letter. You repeat this twice more for a total of three letters
in all, and each time the child answers correctly. You ask the child how she is able
to accomplish this. She answers that she has learned the whole alphabet watching
“Sesame Street.”

(2) You take the same pack of cards, shuffle them and look at the card you pick, but
do not show it to a subject. The subject correctly names the card. You repeat the
process twice more, and each time the card is correctly named. You ask the subject
how he is able to do this. The subject answers that he is a professional magician and
is able to give you the illusion that he has read your mind using his conjuring skills.

(3) With the same situation as in case (2), the subject answers that he is a psychic
and able to read your mind.

What is the difference between these situations? The statistical evidence is the same,
but I think that nearly everyone would assess the likelihood of the three explanations
differently. Most would be convinced that the child is probably speaking the truth, and
many would likewise believe that the magician had the skills he claimed, whereas I believe
that most people would demand much more evidence before they would be convinced by
the self-proclaimed psychic. Why this difference? The answer is that our prior probability
in the three cases is different. We have much experience that 6-year-old children frequently
know the alphabet, and a fair amount of experience that magicians can perform surprising
feats by the use of trickery and misdirection; however, most people have little evidence that
psychic powers are real, so the prior probability that an individual is a genuine psychic is
very small. Thus, from a statistical point of view, the same evidence does not necessarily
result in the same posterior belief about the claims made.

Once one admits that prior information is relevant in statistical inference, it seems to
me that one is led inevitably to accept Bayesian premises. Classical statistics was invented
to make statistical inference “objective.” In fact, classical statistics is no more objective
than Bayesian statistics, but by hiding its subjectivity it gives the illusion of objectivity.
As Box (1980) writes:

“In the past, the need for probabilities expressing prior belief has often been thought
of, not as a necessity for all scientific inference, but rather as a feature peculiar
to Bayesian inference. This seems to come from the curious idea that an outright
assumption does not count as a prior belief....I believe that it is impossible logically to
distinguish between model assumptions and the prior distribution of the parameters.”
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And, more pithily, Good (1973):

“The subjectivist states his judgements, whereas the objectivist sweeps them under
the carpet by calling assumptions knowledge, and he basks in the glorious objectivity
of science.”

What, then, are we to make of the fact that the Bayes factor for the PEAR data varies
over a range of 1000, depending on the choice of prior on the alternative hypothesis? Does
this really point to a defect of in the Bayesian approach? I think not. The immediate reason
for this variation of the Bayes factor, of course, is clear: the effect, if any, is extremely
small. If the effect were substantially larger, then the the Bayes factor would range over a
much smaller interval, and (on the same number of data points) any Bayesian who holds
one of the priors I have advocated would be quite emphatic in rejecting the null. Thus,
Bayesian analysis tells us that it takes a great deal more evidence to convince us of the
reality of a very tiny effect than of a large effect.

In my view this should be taken as a warning: because the effect is so small, these
data may not yet provide convincing evidence that an anomaly exists. Different Bayesian
observers, all with priors that are reasonable given their state of prior knowledge, get
different results. This warning is clear to everyone who accepts the Bayesian analysis. It
is, however, a warning that the classical analysis fails to sound. For this reason, I view it
as evidence of a shortcoming in orthodox statistics, and not evidence of a problem with
the Bayesian approach.

Future prospects.
The official position of the PEAR project is that they are studying anomalies, not the

paranormal. Anomalies may be due to any cause, whether mundane or paranormal. Yet
it is obvious that one of the reasons why the PEAR results have excited so much interest,
particularly amongst the public, is the possibility that they may have paranormal causes.

Is it possible for experiments such as these to provide evidence for paranormal effects, as
opposed to mundane ones? This is an interesting question. As I see it, there is an essential
difficulty, because experiments of the kind discussed here cannot discriminate between the
two hypotheses. However interesting the anomalies produced by these experiments may be,
they cannot tell us whether the anomalies indicate new physics (for example) or something
less exciting such as an undetected mundane error.

The problem is that statistics cannot easily discriminate between hypotheses that have
essentially the same likelihood function. Since the hypothesis of paranormal effect and the
hypothesis of mundane error are equally good at predicting the existence of an anomaly,
statistics cannot tell us which one is right. And since the posterior probability is propor-
tional to the likelihood times the prior, new data cannot much alter our opinion about
the relative merits of each hypothesis. No amount of statistical analysis can change this
situation: the only cure is to do a different kind of experiment, one that can distinguish
between these two hypotheses.

Consider, for example, the the card guessing experiment that I presented earlier. I
deliberately chose the numbers (3 cards of an alphabetic set) so that, were the subject
guessing, the probability of getting all three correct would approximately equal the classical
P-value from the PEAR data. What of subject number 3, the one who claims to have
psychic powers? Perhaps this subject is actually a conjurer like subject 2, but is pretending
to have psychic powers. We know that conjurors can accomplish by mundane means that
which appears to be paranormal. We know that magicians sometimes pose as psychics. The
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prior probability that a surprising feat like card-guessing was accomplished by mundane
means seems to me to be much larger than that it was accomplished by paranormal powers.
But the experiment itself does not allow me to distinguish between the two hypotheses, so
it is unlikely to alter my opinion that paranormal effects are not involved by much. I do
not need to know exactly how the feat was accomplished in order to reach this conclusion.
(This point has been made by Jaynes 1990, and discussions by Good 1950, and Mosteller
and Wallace 1964 are also relevant.)

The smallness of the signal in the REG experiments is not the problem. The signals in
many experiments in physical sciences are far smaller than those claimed to exist in the
REG work, but the evidence that these signals are real is often absolutely compelling. For
example, for 20 years, the University of Texas’ McDonald Observatory has been beaming
short pulses of laser light at a reflector on the Moon. About one time in ten, a single photon
returns and is detected. It has become routine to detect and identify that single photon
from amongst many thousands of “noise” photons that also enter the telescope. This
was accomplished by careful experimental design and clever technique. If the experiment
depended on the kind of

√
N “beating down the noise” that has become the norm in

parapsychological research, the laser ranging experiment could not work.
I believe that it would be interesting try to devise experiments based on very dif-

ferent principles from the ones that have been conducted since Rhine introduced the
statistical/cognitive-science model into parapsychological research. Modern technology
has made available many devices that might be pressed into service. For example, a recent
report (Eigler et. al. 1991) describes a switch that can be turned on and off by moving a
single atom across a microscopic gap. If PK can really affect the roll of dice, or the fall of
balls in a random mechanical cascade, it might be capable of moving a single atom across
a gap of a few microns. If PK is a real phenomenon, the principle behind this switch might
make it possible, for example, to build a device that would let me turn my TV set on or off
at will just by my thinking about it. If this were possible, it would be very exciting indeed:
PK as a phenomenon would become as commonplace and uncontroversial as electricity.
Of course, the experiment might well fail. But even in this case, one would be better off
for having done the experiment, because it would enable one to rule out certain models of
how PK, if real, might work. This, in turn, might suggest other lines of research.

Conclusions.
To turn Richard W. Hamming’s phrase, the purpose of statistics is insight, not numbers.

Statistics is a tool for helping us to make sensible decisions in the face of data, decisions
that are consistent with our prior knowledge and with new information that may come to
our attention. It is not a tool for bludgeoning those who disagree with you, either with
small P-values or with large Bayes factors. The statistician can provide guidance as to
what the statistics mean; but the individual consumer of the statistics remains the ultimate
judge of whether the evidence of any experiment is convincing.

Statistics cannot substitute for good judgement, nor can it transform a flawed exper-
iment into a valid one. Where an experiment cannot distinguish between two equally
capable explanations, no amount of statistical analysis will change that situation. Where
data are at the margins of detectablility, the solution is to design a better experiment, not
more statistics. P-values, as provided by orthodox statistical methods, can be and often
are misunderstood even by those who use them every day. Data-dependent P-values con-
tain subtle traps that makes their interpretation hazardous. Bayesian statistics, because
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of its straightforward interpretation, and because the assumptions are out in the open,
offers a way to clarify and sharpen our thinking about experiments, and by giving us new
insight about why parapsychological experiments are not having their intended effect of
convincing a skeptical scientific world, they can point out research directions that might
be more fruitful.
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