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Abstract

The calibration of the Hubble Space Telescope Fine Guidance Sensors
(FGS) posed a number of unique challenges. There existed no star field of
sufficient size known to the precision and accuracy required to calibrate
the optical field angle distortion (OFAD) of the telescope. Therefore, it
was necessary to use observations by the FGS to calibrate itself. This in-
volved application of a number of ideas that H.K. Eichhorn has developed
and used: Overlapping plate models, rigorous use of statistical methods,
statistical analysis of the errors introduced by the plate constants, and
global solution methods. In this paper I will discuss the many influences
that Eichhorn’s seminal ideas had on solving this important astrometric
problem.

1 Introduction

The Hubble Space Telescope (HST) Fine Guidance Sensors (FGS) were designed
to serve two purposes: fine pointing of the telescope and astrometry. The fine-
pointing function is an engineering function, and the FGS form an integral part
of the telescope’s pointing and control system (PCS) together with the gyros, the
coarse star sensors, and the reaction wheel assembly. But the second function
is the one we are interested in. Because the fine pointing of the telescope was
specified to be ±0.007′′, the capability of very precise position measurement had
to be built into the FGS units anyway, so special efforts were made to ensure
that they could be used for astrometry, at a design level of ±0.0027′′ RMS,
combined in x and y.

My purpose in this paper is not to go into great detail about the astrometric
use of the FGS, but instead to outline the calibrations we had to accomplish
for one of the astrometric modes, the so-called POS (positional) mode, with
special attention to the ways in which Heinrich Eichhorn influenced our choice
of methods and techniques.
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Figure 1: The HST Field of View, showing the location of the FGS

The Hubble Space Telescope is a 2.4-meter, f-24 instrument of Ritchey-
Chrètien design. As such it has a large amount of radially symmetric optical
distortion. Fortunately, the well-known problem of spherical aberration due
to mirror misfigure doesn’t affect astrometric accuracy although it does reduce
fringe visibility in the FGS Koester’s prism interferometer. The problem for the
FGS is made even more severe because the FGS units are located well away
from the optical axis of the telescope (see Figure 1). Long before launch, it was
understood that calibration for the optical field angle distortion (OFAD) would
be required. In a perfect telescope, the distortion can be modelled as

x′ = ρ3x(x2 + y2) + ρ5x(x2 + y2)2

y′ = ρ3y(x2 + y2) + ρ5y(x2 + y2)2 (1)

However, with the real telescope, additional terms must be included to fully
model optical misfigure and misalignment of the many elements in the system,
and the full distortion polynomial, with enough terms to recover the astrometry
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error budget to the level of 1 milliarcsecond (MAS) is of the form [DAR84]

x′ = a00 + a10x+ a01y + a20x
2 + a11xy + a02y

2 + a30x(x2 + y2)
+a21x(x2 − y2) + a12y(y2 − x2) + a03y(y2 + x2)
+a50x(x2 + y2)2 + a41y(x2 + y2)2 + a32x(x4 − y4)
+a23y(y4 − x4) + a14x(y2 − x2)2 + a05y(y2 − x2)2

y′ = b00 + b10x+ b01y + b20x
2 + b11xy + b02y

2 + b30x(x2 + y2)
+b21x(x2 − y2) + b12y(y2 − x2) + b03y(y2 + x2)
+b50x(x2 + y2)2 + b41y(x2 + y2)2 + b32x(x4 − y4)
+b23y(y4 − x4) + b14x(y2 − x2)2 + b05y(y2 − x2)2 (2)

The standard method of evaluating the coefficients of such a polynomial
would be to rely upon an already-calibrated field of standard stars. Such a field
did not exist to sufficient accuracy to do the calibration this way, and so it
became necessary to resort to a different strategy. If the OFAD were properly
calibrated, then observing the same field of view at various orientations and
positions should yield the same relative positions of the stars. This exploits the
metric invariance of the star field under repointings of the telescope, which nat-
urally leads to an overlapping plate problem, as pioneered by Eichhorn [Eic60]
(see also [GEL70] and [Jef79]).

Various practical considerations led to the choice of a field in M35 as the
calibration field. This field is relatively rich and of the right angular size to
match the size of the HST FGS field of view. The stars are of the right magnitude
range (10 ≤ V ≤ 14). These characteristics permit a large number of stars to
be measured in the relatively short period available during a single orbit. A
lower accuracy set of positions [MS86] was already available from groundbased
observations, which enabled an “engineering” OFAD calibration adequate for
pointing purposes to be conducted alongside the “scientific” calibration using
the same set of data. Finally, the field is near the ecliptic, so that there is a
time of year during which the field is 180◦ away from the sun, permitting any
orientation of the telescope to be used relative to the cluster.

The final OFAD calibration involved measurements of some 50 stars and 19
pointings of the telescope with various offsets and rolls designed to obtain the
maximum leverage on the OFAD coefficients (Figure 2). Later I will discuss
some of the techniques we used in settling upon a particular overlap pattern.

2 Formulation of the Model

From the beginning, our goal was to model the geometric optics of the fine
guidance sensors as closely as possible, and to leave the Eqs. (2) as the only
empirical aspect of the model. The fine guidance sensors are a fairly complex
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Figure 2: The overlap pattern for the HST OFAD calibrations

optical-mechanical system (Figure 3) including a pick-off mirror, a collimating
asphere, and two star selectors that bring the light from a star onto the axis of
the detector by rotating the detector axis around the optical axis with an offset
of a fixed angle, each by about 7.1◦ (Figure 4). Stars are observed by moving
the instantaneous field of view (FOV) from star to star, integrating on each star
for a sufficient time (depending on magnitude) to obtain the desired precision,
typically 60 seconds. Some of the optics in the system have power, so the actual
field of view of the FGS goes approximately from 10.2′ to 14′ from the optical
axis of the telescope.

In addition, we decided to model the star positions as unit vectors pointing
towards the stars, rather than to use standard coordinates, which would not
have been appropriate given the particular optical-mechanical configuration of
the FGS. This follows an idea originally suggested by Eichhorn [Eic71], who
proposed direct adjustment of the right ascensions and declinations of the stars.
In our case, it seemed preferable to work with the unit vectors, though this does
introduce a complication in that we need to enforce the constraint that the unit
vectors have unit length. On the other hand, it makes it easy to handle the
offsets introduced by the overlapping fields. This could be done with matrices,
but we elected to accomplish it using unimodular (unit length) quaternions.
The quaternion method was published in [Jef87], and it has proven to be very
effective. It has the advantage that the equations describing the telescope re-
pointings are purely algebraic and involve no trigonometric functions. They are
free of the singularities that would arise if Euler angles were used. With this
approach, the statistical model for the OFAD calibration becomes

Q†pξ̂Qp = û+ ∆û+ ε̂
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Figure 3: Schematic diagram of the FGS units.
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with
Q†pQp = 1

where û is the observed position vector in the FGS instrumental frame; ξ̂ is
the unknown parameter of star positions in a fixed reference frame; Qp is an
unknown unimodular quaternion for transforming the different pointings p to a
reference pointing; ε̂ is the measurement error; and ∆û contains the systematic
corrections for all of the components of the model, some of which (such as
groundbased measurements of the deviations of pick–off mirror and asphere
from “ideal”) are already known and some of which involve parameters (such as
the constants in Eqs. 2) that are to be determined. In particular, the quantities
(x, y) of Eqs. (2) are simply the first and second components of û. Also included
in the model are physical effects such as differential aberration due to spacecraft
motion. Details of the rather complex model can be found in [JWW+94].

3 Some Statistical Considerations

Heinrich Eichhorn has been a consistent advocate of the use of rigorous meth-
ods of statistical adjustment of data. He early became aware of the power of
electronic computers and recognized that this development necessarily entailed
a revolution in the way that astrometry (in particular) was being done. He
pointed out that the existence of computers meant that there was no longer
any excuse to rely upon approximate methods of reduction, and that only rig-
orous methods would suffice in the future. He rediscovered and taught the use
of the methods of Deming [Dem38] and Brown [Bro55], and has also published
important refinements of these methods [ER76]. Inspired by his example and
encouragement, I also sought to understand and improve upon Deming’s and
Brown’s methods, which resulted in several papers ([Jef80], [Jef81], [Jef90]), in
which a rigorously correct treatment of the fully nonlinear maximum likelihood
estimator is developed, and then extended to the robust regime to account for
possible outliers in the data.

This work also led us to write the computer program GaussFit [JFM88],
which embodies in software the ideas in these papers. GaussFit is our attempt
to make it very easy to apply rigorous statistical reduction algorithms, especially
to astrometric data. It includes a computer language that is specifically designed
for expressing complex least-squares problems at the highest level. Essentially,
one writes an algorithm that embodies the physical/mathematical model that one
is trying to solve in a very high-level language; GaussFit’s compiler translates
this into a program for a virtual computing machine that emulates that model.
The virtual computing machine knows about derivatives and keeps track of
them automatically and analytically in all calculations. It is therefore able to
compute the matrices required for the algorithms exactly. The matrix equations
are solved using a computationally efficient QR decomposition method that has
good properties of numerical stability.
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GaussFit turned out to be essential for our actual application to this prob-
lem. Since we wanted to use an accurate physical model of the FGS, the actual
mathematical representation of the model is rather complex, and it would have
been orders of magnitude more difficult for us to implement the derivative part
of the code “by hand.” But, since GaussFit takes care of the derivatives auto-
matically, we did not have to cope with that aspect of the problem and were
able to concentrate on making sure that the mathematical model was correct.
Furthermore, GaussFit gave us great freedom in trying out various approaches
to our problem.

An essential feature of Deming’s approach to least squares, which is inherited
in all of the subsequent work I cited, is the ability to enforce exact constraints.
We programmed this capability into GaussFit. It is needed in our application,
for example, to enforce the constraints that the position vectors representing
the star positions are unit vectors, and that the quaternions that represent the
different pointings of the spacecraft are unimodular. With GaussFit, each of
these constraints can be enforced for all cases with a single line of GaussFit
code.

The ability to enforce constraints turned out to be crucial in another way.
The nature of the problem at hand turns out to include a number of unidenti-
fied parameters, which cannot be determined uniquely from the data and must
therefore be constrained in order to obtain an adequate solution. For example,
one pointing of the telescope is designated as a reference pointing, and all other
pointings are referred to it. The unit vectors ξ̂ are also referred to this pointing.
Therefore, we need to constrain the quaternion of the first pointing to repre-
sent no rotation at all. Similarly, we must enforce constraints associated with
scale changes (“gauge constraints”). The very simple, elegant tools available in
GaussFit made it easy for us to include such constraints and to experiment with
the best way to formulate them.

4 Choice of Overlap Pattern

In choosing the overlap pattern (Figure 2) we were faced with several operational
constraints: First, the amount of spacecraft time that would be allowed for the
calibration would be limited. HST time is precious, and although this is a crucial
calibration both for engineering and for scientific (astrometric) purposes, it was
our responsibility to design a test that would get adequate accuracy with a
minimum expenditure of spacecraft resources. Second, it was necessary to take
all of the data for a single pointing of the spacecraft during a single orbit, to
maintain the homogeneity of the data from that pointing. And third, we had to
remeasure several “check stars” during the course of the measurement to guard
against unexpected events that might compromise the data take. Early in the
mission, for example, “Hubblequakes” resulting from sudden releases of energy
due to “stiction” in the solar arrays were a major problem. Another serious
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problem—for astrometry—was the changing characteristics of the PCS and the
FGS, due to thermal effects during the course of the observation.
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Figure 5: Bootstrap predictions of astrometric accuracy over the FGS field of
view

For these reasons we were limited to about 30 different stars per pointing.
Naturally we tried to devise overlap patterns that would maximize the number
of times a given star would appear in different pointings, since that is the source
of the information that allows us to learn about the field angle distortions. But
it was also necessary to understand how different pointing patterns would affect
the statistical information obtained. For this reason, we resolved to use ideas
suggested by Eichhorn and Williams [EW63] to understand the variation of the
error introduced by our adjustment as a function of position within the FGS
field of view. Other work on this approach can be found in [vdH77].

Eichhorn and Williams used analytical inversion of the matrix of the normal
equations of a plate adjustment to compute the error introduced by the adjust-
ment as a function of position on the plate. They therefore assumed a smooth
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distribution of stars and approximated the product sums by integrals. In our
case, such a procedure would have been unfeasable because of the very large
size of the overlapping plate problem (with approximately 200 unknowns and
1200 equations of condition). It also would have been undesirable since it would
have thrown away information that the actual distribution of the stars had on
the solution, since we had already settled upon a particular field of stars.

Therefore we looked for a method that would enable us to obtain equivalent
information by simulation. We decided to use a statistical technique known as
“bootstrapping” [Efr82] to provide the needed information. With this technique,
one simulates the information on the statistical problem with a Monte Carlo
technique. This is done by making a baseline solution with the original data
(this can actually be observed data, however in the simulations we did in the
planning stages we used artificial data), and then creating a “library” of residuals
for that solution. By sampling with replacement from the “library,” we can
create a large number of data sets out of the reference solution which have the
same statistical properties as the original data set. Each data set is then solved
using the same GaussFit program that we developed to analyze the OFAD data.
The analysis produces a simulated statistical sample of errors for each of the
stars in the solution. These in turn can be analyzed to inform us about the
properties of the errors as a function of position in the field of view (Figure 5).
This work was done by my student Q. Wang [Wan90] for his master’s thesis.

A nineteen orbit calibration (Figure 2) was performed in the spring of 1993
for the initial on-orbit calibration of the optical field angle distortion. Additional
partial calibrations have been performed alongside regular stability tests. These
have allowed us to maintain an error level of better than 2 milliarcseconds over
most of the field of view of the FGS.

5 Summary

Our survey of the calibration of the Hubble Space Telescope fine guidance sen-
sors has been of necessity brief. We have not touched upon the calibration of
the transfer function, used for the observation of close (≥ 10 MAS) double stars,
which is a story in its own right. We have deliberately obscured the complexities
of the model for POS mode astrometry, and have not mentioned refinements in
the model that we had to add to compensate for unmodelled errors that were
discovered as a result of a careful investigation of the residuals of the OFAD cal-
ibration. Nonetheless, we have shown in this paper how profound the influence
of Heinrich Eichhorn has been on just this one problem. It is only one example
of the influence that his career has had on all of astrometric science. On this
occasion of his 70th birthday, we thank him for all that he has contributed to
our endeavors.
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