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Abstract

H.K. Eichhorn had a lively interest in statistics during his
entire scientific career, and made a number of significant
contributions to the statistical treatment of astrometric
problems. In the past decade, a strong movement has taken
place for the reintroduction of Bayesian methods of statistics
into astronomy, driven by new understandings of the power of
these methods as well as by the adoption of computationally-
intensive simulation methods to the practical solution of
Bayesian problems. In this paper I will discuss how Bayesian
methods may be applied to the statistical discussion of
astrometric data, with special reference to several problems
that were of interest to Eichhorn.
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Bayesian Analysis and Astronomy

• Bayesian methods offer many advantages for astronomical
research and have attracted much recent interest.

• Astronomy and Astrophysics Abstracts lists 117 articles
with the keywords ‘Bayes’ or ‘Bayesian’ in the past 5
years, and the number is increasing rapidly (there were 33
in 1999 alone).

• At the June 1999 AAS meeting in Chicago, there was a
special session on Bayesian and Related Likelihood
Techniques. Another session at the June 2000 meeting will
also feature Bayesian methods.
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Advantages of Bayesian Methods

• Bayesian methods allow us to do things that would be difficult
or impossible with standard (frequentist) statistical analysis.

• It is easy to incorporate prior physical or statistical
information

• Results depends only on what is actually observed, not on
observations that might have been made but were not.

• We can compare models and average over both nested and
unnested models.

• Correct interpretation of results is very natural, especially
for physical scientists.
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Advantages of Bayesian Methods

• It is a systematic way of approaching statistical problems,
rather than a collection of ad hoc techniques. Very complex
problems (difficult or impossible to handle classically) are
straightforwardly analyzed within a Bayesian framework.

• Bayesian analysis is coherent: we will not find ourselves in
a situation where the analysis tells us that two contradictory
things are simultaneously likely to be true.

• With proposed astrometric missions (e.g., FAME) where
the signal can be very weak, analyses based on normal
approximations may not be adequate. Bayesian analysis of
Poisson-distributed data, for example, may be a better
choice.
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Basic Method

• In a nutshell, Bayesian analysis entails the following
systematic steps:

• Choose prior distributions (“priors”) that reflect your
knowledge about each parameter and model prior to
looking at the data

• Determine the likelihood function of the data under each
model and parameter value

• Compute and normalize the full posterior distribution,
conditioned on the data, using Bayes’ theorem

• Derive summaries of quantities of interest from the full
posterior distribution by integrating over the posterior
distribution to produce marginal distributions or integrals
of interest (e.g., means, variances).

Statistics for Astrometry 3/20/00 7

Priors

• Choose prior distributions (“priors”) that reflect your
knowledge about each parameter and model prior to looking at
the data
• The investigator is required to provide all relevant prior

information that he has before proceeding
• There is always prior information. For example, we cannot

count a negative number of photons. Parallaxes are greater
than zero. We now know that the most likely value of the
Hubble constant is in the ballpark of 60-80 km/sec/mpc
(say) with smaller probabilities of its being higher or lower.

• Prior information can be statistical in nature, e.g., we may
have statistical knowledge about the spatial or velocity
distribution of stars, or the variation in a telescope’s plate
scale.
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Prior Information

• In Bayesian analysis, our knowledge about an unknown
quantity is encoded in a prior distribution on the quantity in
question, e.g., p(θ|B), where B is background information.

• Where prior information is vague or uninformative, a vague
prior generally recovers results similar to a classical
analysis.

» EXCEPTION: Model selection/model averaging

• Sensitive dependence of the result on reasonable variations
in prior information indicates that no analysis, Bayesian or
other, can give reliable results.
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Prior Information

• The problem of prior information of a statistical or
probabilistic nature was addressed in a classical framework by
Eichhorn (1978: “Least-squares adjustment with probabilistic
constraints,” MNRAS 182,366-360) and by Eichhorn and
Standish (1981: “Remarks on nonstandard least-squares
problems,” AJ 86, 156-159).

• They considered adjusting astrometric data given prior
knowledge about some of the parameters in the problem, e.g.,
that the plate scale values only varied within a certain
dispersion.

• For the cases studied in these papers (multivariate normal
distributions), their result is similar to the Bayesian one (but
the interpretation is different).
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Prior Information

• In another example, Eichhorn and Smith studied the Lutz-
Kelker bias (1996: MNRAS 281, 211-218).

• The classical way to understand the Lutz-Kelker bias is that
we are more likely to have observed a star a slightly farther
away with a negative error that brings it in to the observed
distance, than we are to have observed a slightly nearer star
with a positive error that pushes it out to the observed distance,
because the number of stars increases with increasing distance.

• The Bayesian notes that is more likely a priori that a star of
unknown distance is farther away than that it is nearer. The
mathematical analysis gives a similar result, but the Bayesian
approach, by demanding at the outset that we think about prior
information, inevitably leads us to consider this phenomenon,
which classical analysis missed for a century.
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Likelihood Function

• Determine the likelihood function of the data under each model
and parameter value.

• The likelihood function describes the statistical properties
of the mathematical model of our problem. It tells us how
the statistics of the observations (e.g., normal or Poisson
data) are related to the parameters and any background
information.

• It is proportional to the sampling distribution for observing
the data Y, given the parameters, but we are interested in its
functional dependence on the parameters:

• The likelihood is known up to a constant but arbitrary
factor which cancels out in the analysis.

L Y B p Y B( ; | ) ( | , )θ θ∝
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Likelihood Function

• Like Bayesian estimation, maximum likelihood estimation
(upon which Eichhorn based many of his papers) is founded
upon using the likelihood function.

• This is good, because the likelihood function is always a
sufficient statistic for the parameters of the problem.

• However, it is not the whole story

• Maximum likelihood does not take prior information into
account

• It fails in some notorious situations, like errors-in-variables
problems where the variance of the observations is
estimated (Bayesian analysis gets the right answer;
classical analysis relies on an ad hoc factor of 2 correction)

• There are other difficulties as well
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Posterior Distribution

• Compute and normalize the full posterior distribution,
conditioned on the data, using Bayes’ theorem.

• The posterior distribution encodes what we know about the
parameters and model after we observe the data. Thus,
Bayesian analysis models learning.

• Bayes’ theorem says that

• Bayes’ theorem is a trivial result of probability theory. The
denominator is just a normalization factor and can often be
dispensed with

p Y B
p Y B p B

p Y B
p Y B p B( | , )

( | , ) ( | )
( | )

( | , ) ( | )θ θ θ θ θ= ∝

p Y B p Y B p B d( | ) ( | , ) ( | )= ∫ θ θ θ
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Bayes’ Theorem (Proof)

• By standard probability theory,

from which Bayes’ theorem follows immediately.

p Y B p Y B p Y B p Y B p B( | , ) ( | ) ( , | ) ( | , ) ( | )θ θ θ θ= =
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Posterior Distribution

• The posterior distribution after observing data Y  can be used
as the prior distribution for new data Z , which makes it easy to
incorporate new data into an analysis based on earlier data.

• It can be shown that any coherent model of learning is
equivalent to Bayesian learning. Thus in Bayesian analysis
• Results take into account all known information
• Results do not depend on the order in which the data (e.g, Y

and Z) are obtained
• Results are consistent with common sense inductive

reasoning as well as with standard deductive logic, e.g., if
A entails B, then observing B should support A
(inductively), and observing ~B should refute A (logically)
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Integration and Marginalization

• Derive summaries of quantities of interest from the full
posterior distribution by integrating over the posterior
distribution to produce marginal distributions or integrals of
interest (e.g., means, variances).

• Bayesian methodology provides a simple and systematic
way of handling nuisance parameters required by the
analysis but which are of no interest to us. We simply
integrate them out (marginalize them) to obtain the
marginal distribution of the parameter(s) of interest:

• Likewise, computing summary statistics is simple : e.g.,
posterior means and variances

p Y B p Y B d( | , ) ( , | , )θ θ θ θ1 1 2 2= ∫

θ θ θ θ θ θ1 1 1 2 1 2| , ( , | , )Y B p Y B d d= ∫
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The Problem of Model Selection

• Eichhorn and Williams (1963: “On the systematic accuracy of
photographic astrometric data,” AJ 68, 221-231) studied the
problem of choosing between competing astrometric models.
Often the models are empirical, e.g., polynomial expansions in
the coordinates.

• The problem is to avoid the Scylla of underfitting the data,
resulting in a model that is inadequate, and the Charybdis of
overfitting the data.

• Navigating between these dangerous shoals is by no means
trivial, and standard statistical methods such as the F-test and
stepwise regression are not to be trusted (they too easily reject
adequate models in favor of overly complex ones).
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The Problem of Model Selection

• Eichhorn and Williams proposed a criterion based on trading
off the decrease in average residual against the increase in
average error introduced by the plate constants.

• The Bayesian approach reveals how these two effects should
be traded off against each other, producing a sort of Bayesian
Ockham’s razor that favors the simplest adequate model.

• Eichhorn and Williams’ basic notion is sound; but in my
opinion the Bayesian approach to this problem is simpler and
more compelling, and

• It is not limited to nested models

• It allows for model averaging, unavailable with any
classical approach.

Statistics for Astrometry 3/20/00 19

Bayesian Model Selection/Averaging

• Given models Mi, which depend on a vector of parameters ϑ ,
and given data Y,  Bayes’ theorem tells us that

• The probabilities p (ϑ  | M ) and p (M ) are the prior
probabilities of the parameters given the model and of the
model, respectively; p (Y |ϑ  , M ) is the likelihood function,
and p (ϑ , M |Y ) is the joint posterior probability distribution of
the parameters and models, given the data.

• Note that some parameters may not appear in some models,
and there is no requirement that the models be nested.

p M Y p Y M p M p Mi i i i( , | ) ( | , ) ( | ) ( )ϑ ϑ ϑ∝ ,
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Bayesian Model Selection

• Assume for the moment that we have supplied priors and
performed the necessary integrations to produce a normalized
posterior distribution. In practice this is often done by
simulation using Markov Chain Monte Carlo (MCMC).

• Once this has been done, it is simple in principle to compute
posterior probabilities of the models:

• This set of numbers summarizes our degree of belief in each of
the models, after looking at the data. If doing model selection,
we choose the model with the highest posterior probability

p M Y p M Y di i( | ) ( , | ),= ∫ ϑ ϑ
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Bayesian Model Averaging

• Suppose that one of the parameters, say ϑ1, is common to all
models and is of particular interest. For example, it could be
the distance to a star. Then instead of choosing the distance as
inferred from the most probable model, it may be better
(especially if the models are empirical) to compute its
marginal probability density over all models and other
parameters:

• Then, if we are interested in summary statistics on ϑ1 we can
(for example) compute its posterior mean and variance:

p Y p M Y d d
i n i n( | ) ( ,... , | ) ...,ϑ ϑ ϑ ϑ ϑ1 1 2= ∑ ∫

ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ1 1 1 1 1 1 1
2

1 1= = −∫ ∫p Y d p Y d( | ) , ( ) ( ) ( | ) Var
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Practical Application

• Until recently, a major practical difficulty has been computing
the required integrals, limiting the method to situations where
exact results can be obtained with analytic approximations

• In the past decade, considerable progress has been made in
solving the computational difficulties, particularly with the
development of Markov Chain Monte Carlo (MCMC)
methods for simulating a random sample (draw) from the full
posterior distribution, from which marginal distributions and
summary means and variances (as well as other averages) can
be calculated conveniently.

• These methods have their origin in physics. The Metropolis-
Hastings and Gibbs sampler methods are two popular schemes
that originated in early attempts to solve large physics
problems by Monte Carlo methods.
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Practical Application: Markov Chains

• Start from an arbitrary point in the space of models and
parameters. Following a specific set of rules, which depend
only on the unnormalized posterior distribution, generate a
random walk in this space, such that the distribution of the
generated points converges to a sample drawn from the
underlying posterior distribution.

• The random walk is a Markov Chain: That is, each step
depends only upon the immediately previous step, and not on
any of the earlier steps.

• Many rules for generating the transition from one state to the
next are possible. All converge to the same distribution. One
attempts to choose a rule that will give efficient sampling with
a reasonable expenditure of effort and time.
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Gibbs Sampler

• The Gibbs Sampler is a scheme for generating a sample from
the full posterior distribution by sampling in succession from
the conditional distributions. Thus, let the parameter vector θ
be decomposed into a set of subvectors θ1, θ2, …, θn. Suppose
it is possible to sample from the conditional distributions

p(θ1| θ2, θ3,…, θn),

p(θ2| θ1, θ3,…, θn),

…

p(θn| θ1, θ2,…, θn-1).
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Gibbs Sampler (2)

• Starting from an arbitrary initial vector
θ(0) =(θ1

(0), θ2
(0), …, θn

(0)),
generate in succession vectors θ(1), θ(2),… by sampling in
succession from the conditional distributions:

p(θ1
(k)| θ2

(k-1) , θ3
(k-1),…, θn

(k-1)),

p(θ2
(k)| θ1

(k), θ3
(k-1),…, θn

(k-1)),

…

p(θn
(k)| θ1

(k), θ2
(k),…, θn-1

(k) ), with
 θ(k) =(θ1

(k), θ2
(k), …, θn

(k)).

• In the limit, the sample thus generated will converge to a
sample drawn from the full posterior distribution.
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Gibbs Sampler (Example)

• Suppose we have normally distributed estimates Xi, i=1,…,N,
of a parameter x, with unknown variance σ. The likelihood is

p(X|x,σ) ~ σ -Nexp(- Σ(Xi-x)2/2σ2)

• Assume a flat (uniform) prior for x and a “Jeffreys” prior 1/σ
for σ. The posterior is proportional to prior times likelihood:

p(x,σ|X) ~ σ -(N+1)exp(- Σ(Xi-x)2/2σ2)

• The conditional distributions are: for x, a normal distribution
with mean equal to the average of the X’s and variance equal
to σ2 (which is known at each Gibbs step); and for σ2, an
inverse chi-square distribution with N-1 degrees of freedom.
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Metropolis-Hastings Step

• The example is simple because the conditional distributions
are all standard distributions from which samples can easily be
drawn. This is not usually the case, and we would have to
replace Gibbs steps with another scheme.

• A Metropolis-Hastings step involves producing a sample from
a suitable proposal distribution q(θ*|θ), where θ is the value at
the previous step. Then a calculation is done to see whether to
accept the new θ* as the new step, or to keep the old θ as the
new step. If we retain the old value, the sampler does not
“move” the parameter θ at this step. If we accept the new
value, it will move.

• We choose q so that it is easy to generate random samples
from it, and with other characteristics.
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Metropolis-Hastings Step (2)

• Specifically, if p(θ) is the target distribution from which we
wish to sample, first generate θ* from q(θ*|θ).

•  Then calculate

α=min{1,(p(θ*) q(θ|θ*))/(p(θ) q(θ*|θ))}

• Then generate a random number r uniform on [0,1]
• Accept the proposed θ* if r≤α, otherwise keep θ.

• Note that if p(θ*)= q(θ*|θ) for all θ, θ*, then we will always
accept the new value. In this case the Metropolis-Hastings step
becomes an ordinary Gibbs step.

• Generally, although the Metropolis-Hastings steps are
guaranteed to produce a Markov chain with the right limiting
distribution, one gets better performance the closer we can
approximate p(θ*) by q(θ*|θ).
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Example: Cepheid Distances

• With T.G. Barnes of McDonald Observatory and J.O. Berger
and P. Müller of Duke University’s Institute for Statistics and
Decision Sciences, I have been working on a Bayesian
approach to the problem of estimating distances to Cepheid
variables using the surface-brightness method.

• We use photometric data in several colors as well as Doppler
velocity data on the surface of the star to determine the
distance and absolute magnitude of the star.

• The problem, although not an astrometric problem per se, is
nonetheless a good example of the application of Bayesian
ideas to problems of this sort and illustrates several of the
points made earlier (prior information, model selection, model
averaging).
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Cepheid Distances

• We model the radial velocity and V-magnitude of the star as
Fourier polynomials of unknown order, where ϑ  is the phase.
Thus, for the velocities:

• This becomes a model selection/averaging problem because
we want to use the optimal number of coefficients and/or we
want to average over models in an optimal way.

                    where

 is the observed radial velocity

 is the mean radial velocity and

                 (

v v v

v

v

v a j b j

r r r

r

r

r j
j

K

j

= +

= +
=

∑

∆

∆ cos sin )ϑ ϑ
1

Statistics for Astrometry 3/20/00 31

• Arrow shows physically real “glitch”

Velocity Fit, Fourth Order
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Velocity Fit, Fifth Order
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• Seems to be a good fit.
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Velocity Fit, Sixth Order
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• Arrows (particularly A) show evidence of overfitting
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Mathematical Model

• The ∆ –radius of the star is the integral of the ∆− radial
velocity:

where f is a positive numerical factor.

• The relationship between the radius and the photometry is
given by

where the V and R magnitudes are corrected for reddening, A,
B, and C are known constants, φ0 is the angular diameter of the
star and s is the distance to the star.

∆r f a j b jj j j
j

K

j= − −
=

∑ ( sin cos ) /ϑ ϑ
1

V C A B V R r s= − + − − +10 0 5 10 0( ( ( ) . log ( / )))φ ∆
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Cepheid Distances

• The resulting model is fairly complex, simultaneously
estimating a number of Fourier coefficients and nuisance
variables (up to 40 variables) for a large number of distinct
models, along with the variables of interest (distance and
absolute magnitudes).

• The Markov chain provides a sample drawn from the posterior
distribution for our problem as a function of all of these
variables, including model specifier.

• From it we obtain very simply the marginal distributions of
parameters of interest as the marginal distributions of the
sample, and means and variances of parameters (or any other
desired quantities) as sample means and sample variances
based on the sample.

Statistics for Astrometry 3/20/00 36

Sample Run

• Note: Here in the talk I showed a selection of charts based on
the cepheid variable simulations. A copy of the charts can be
found as a .pdf file associated with this lecture on my web
page. It is a large download, about 2.5 MB, so be warned!
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Significant Issues on Priors

• Cepheids are part of the disk population of the galaxy, and for
low galactic latitudes are more numerous at larger distances s.
So distances calculated by MLE or with a flat prior will be
affected by Lutz-Kelker bias, which can amount to several
percent.

• The Bayesian solution is to recognize that our prior
distribution on the distance of stars depends on the distance

• For a uniform distribution it would be proportional to s2ds,
which although an improper distribution, gives a reasonable
answer if the posterior distribution is normalizable.
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Significant Issues on Priors

• In our problem we chose a spatial distribution of stars that is
exponentially stratified as we go away from the galactic plane.
We adopted a scale height of 97±7 parsecs, and sampled the
scale height as well. Our prior on the distance is

where ρ(s) is the spatial density of stars. For an exponential
distribution we have

where z0 is the scale height, z=s sin β, and β is the latitude of
the star

          

          ( ) ~ (- | | /

p s s s ds

s z z

( ) ~ ( ) ,

exp ),

ρ

ρ

2

0
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Significant Issues on Priors

• The priors on the Fourier coefficients must be chosen
carefully. If they are too vague, significant terms may be
rejected. If too sharp, overfitting may result.

• For our models we have used a Maximum Entropy prior, of
the form

where a is the vector of Fourier coefficients, X is the design
matrix of sines and cosines for the problem, and σ is a
parameter to estimated.

• This maximum entropy prior expresses the proper degree of
ignorance about the Fourier coefficients.

p a a X Xa( ) exp( / ),∝ − ′ ′ 2 2σ
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Conclusions

• Bayesian analysis is a promising statistical tool for discussing
astrometric data.

• It requires us to think clearly about prior information, e.g., it
naturally requires us to consider the Lutz-Kelker phenomenon
from the outset, and tells us how to build it into the model
using our knowledge of the spatial distribution of stars

• It effectively solves the problem of accounting for competing
astrometric models by Bayesian model averaging

• We can expect Bayesian and quasi-Bayesian methods to play
important roles in missions such as FAME, which challenge
the state of the art of statistical technology


