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Abstract. GaussFit is a new computer program for solving least squares and robust estimation
problems. It has a number of unique features, including a complete programming language
designed especially to formulate estimation problems, a built-in compiler and interpreter to support
the programming language, and a built-in algebraic manipulator for calculating the required partial
derivatives analytically. These features make GaussFit very easy to use, so that even complex
problems can be set up and solved with minimal effort. GaussFit can correctly handle many cases
of practical interest: nonlinear models, exact constraints, correlated observations, and models where
the equations of condition contain more than one observed quantity. An experimental robust
estimation capability is built into GaussFit so that data sets contaminated by outliers can be
handled simply and efficiently.

1 . Introduction

Early in the Space Telescope program, it became evident that astrometry needed a
very flexible least squares estimation program. It should be able to handle complex
models, including general overlapping-plate models such as are frequently
encountered in astrometry. The program should be very flexible—it should be easy
to define new models or to change old ones, and to test the results of applying
different models to the same data set. And finally, the program should incorporate
the best available algorithms.

An early version of such a program, called REDUCE,  was described by
Jefferys and Feo (1986). However, REDUCE was not flexible enough and
moreover because of its structure it could not be fully integrated into the Science
Data Analysis Software (SDAS) system at the Space Telescope Science Institute.
Therefore, the fundamental structure of REDUCE was changed, and a new, much
more flexible program, called GaussFit, is the result. Whereas REDUCE required
the user to build estimation models with an existing FORTRAN compiler, GaussFit
contains its own computer language, which is especially designed to make it easy to
specify complex reduction models. The GaussFit programming language provides
an easy and natural way to formulate problems in nonlinear estimation, problems
where an equation of condition can contain more than one observation, problems
with correlated observations, problems involving exact constraints among the
parameters, and problems in which the model can only be expressed algorithmically
and not as a closed form expression. GaussFit uses orthogonal transformations
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(Householder transformations) instead of normal equations to solve the basic least
squares problem, and it also allows the user to specify a robust estimation method
that is resistant to outliers in the data.

GaussFit is written in C, and is currently running on VAX/VMS, Berkeley
UNIX v. 4.3, and Macintosh computers. A user’s manual is available for
distribution. Further information about GaussFit’s availability can be obtained by
contacting the first author.

2 . The Structure of GaussFit

The basic structure of GaussFit is shown in Figure 1. The shaded area represents
the GaussFit program itself, and the boxes outside the shaded area are supplied by
the user. The user first provides a model, written in the GaussFit programming
language (which is rather similar to C). GaussFit takes this program and converts
it, via a built-in compiler, into an intermediate code which is actually the assembly
language of an abstract computing machine. This intermediate code is similar in
spirit to the P-code used in the well-known UCSD Pascal system.
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Fig. 1. The structure of GaussFit.

The intermediate code is then interpreted by an interpreter that emulates the
abstract machine. Equations of condition are formed one-by-one for each line of
data in the user’s data files, and are then sent to the user-specified solution
algorithm. In forming the equations of condition, partial derivatives with respect to
the parameters and the data variables of the problem are required. To compute
these, the abstract computer relies on an algebraic manipulator called the cotangent
bundle machine that is also built into the program. The algebraic manipulator
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actually performs all of the calculations required by the program, not on the set of
real numbers, but instead on complex structures consisting of both values and
derivatives. Mathematically, these objects are elements of the cotangent bundle of a
manifold associated with the estimation problem. However, no knowledge of
cotangent bundles is required to use GaussFit, as these calculations are invisible to
the user.

When all the equations of condition and constraint have been calculated and sent
to the solution algorithm, the latter performs the appropriate matrix calculations to
obtain the corrections to the parameters and residuals. The corrected values are then
entered into the user’s data files to update the solution. If the solution has not
converged, the process is iterated until convergence has been obtained or the
number of iterations exceeds a user-defined maximum. Other results are printed to a
results file, and then program execution is terminated.

Interpretation has both advantages and penalties. The advantages are that the
derivative calculations are easily built in, and features can be included in the
program to make it easier for the user to debug models. The price paid is that
interpretation slows down the execution of the user’s model by the usual factor of
10-30 that is common to interpreters. However, since the code is precompiled into a
tokenized intermediate code, the interpreter can be relatively efficient, and since
most of the program’s time is spent in solving the equations of condition and not in
forming them, the actual penalty is not so great as it might seem at first glance.

3 . Models in GaussFit

The GaussFit programming language is a complete language, like FORTRAN,
Pascal and C. Its structure is similar to that of the C programming language
(Kernighan and Ritchie 1978). It possesses the usual complement of conditional
and looping structures found in traditional computer languages, as well as a modern
nested-statement structure. Both vector and scalar valued variables can be defined
and used, and the user can define new functions and procedures. Thus there is no
theoretical limit to the complexity of model that GaussFit can express.

Most least squares packages require the user to solve for the dependent variable
(the observation) in terms of the independent variables (the parameters). However,
when an equation of condition can contain more than one observation, this is no
longer possible. Therefore, a method described by Deming (1938) has been used in
which the equations of condition are expressed implicitly. For example, consider a
fit of an exponentially decaying quantity y as a function of x. The quantity x is
assumed error-free, whereas y has error. The quantities a and b are parameters to be
solved for. Explicitly one would solve for y, writing

y = ae–bx, (1)

and this form would be required by most least squares packages. However, if both
x and y were subject to error, it would no longer be possible to solve for the
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observations in terms of the parameters a and b. So GaussFit allows the equation of
condition to be expressed implicitly. For example, one may write

y – ae–bx = 0, (2)

or equivalently, one may write

log y – log a + bx = 0. (3)

These two forms will give identical results when used on the same data in
GaussFit.

Equation (3) would be programmed in the GaussFit programming language as
follows:

parameter  a,b;
data  x; /* x is error-free */
observation y; /* y has error.    */

main () {
while ( import ())

export ( log (y) – log (a) + b*x);
}

In this example, the variables a and b are unknown parameters to be
determined by the fit; x is assumed known perfectly (without error), and the
observation y has error. The program is a very short one. The function
import reads the data files line by line, returning the value true as long as
data are read successfully. Each time a data line has been successfully read in, the
equation of condition is calculated, and then the function export sends its
argument to the estimation routines. Notice that when the argument of export
is evaluated, the cotangent bundle machine also calculates the partial derivatives of
the expression with respect to a ,  b , and y . The differentiation is performed
analytically, not numerically. Thus the full precision of the machine word is
preserved (all calculations are done in double precision).

In this example, we made the usual assumption that all of the error is in the
variable y. However, it is very simple to modify the model to handle the case where
both x and y have errors. All that has to be done is to replace the data statement
in the above program with the statement

observation  x; /* x has error.    */
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When this is done, the program will automatically set up the equations of
condition according to the correct prescription (Britt and Luecke 1973; Jefferys
1980, 1981).

To give another example, in astrometry we may desire to solve for both the x and
y variables simultaneously. This means that each line of data will generate two
independent equations of condition. A program to solve a four plate parameter
model would take the form

parameter a,b,c,d;
observation  x,y,xi,eta;

main () {
while ( import ()) {

export (xi  – ( a*x + b*y + c));
export (eta – (–b*x + a*y + d));

}
}

In this example, the variables x and y are the measured positions of a star on
the plate, whereas the variables xi and eta are the catalog positions of the
reference stars. Since both plate measurements and catalog positions have errors,
they must all be declared in an observation statement. Not to do so could
introduce an unwanted bias into the results. As Lybanon (1984) has documented,
the correct formulation of the equations of condition to avoid bias, when more than
one quantity is in error, is not widely known.

GaussFit allows the parameters to be subscripted. This is useful, for example,
when the model has some parameters associated with particular groups of data. For
example, in an overlapping-plate astrometric solution each plate has its own plate
constants, and each star has its own star constants. In addition, there could be
parameters that are common to all plates and stars, for example, those describing
the distortion of the telescope.

An interesting example of a model involving subscripted parameters is the one
used by Barnes, Moffett, Jefferys and Hawley (1987) to reduce photometric data
on Cepheid variable stars. The model involved 131 parameters (65 stars × 2
parameters per star + 1 global parameter), and approximately 3500 equations of
condition were generated. The model in the GaussFit programming language was
only 5 lines long:

parameter  b, alfa[star], rz[star];
observation  v, r, vmr;

main () {
while ( import ())

export (alfa + b*vmr + 5* log10 (rz + r) – v);
}
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In this example, the subscript star is used to index the 70 different values of
the parameters alfa and rz , while the single global parameter b , which is
what we are really interested in, is common to all stars.

Another capability of GaussFit is to enforce exact constraints on a solution. For
example, in an overlapping-plate model with no external reference star positions,
the plate parameters of one of the plates would normally be constrained to have
particular values, making it the “reference” plate. Another example would be if we
wanted to “force-fit” a curve so that it passes through a particular point. For
example, one way to force the exponentially decaying curve of the first example
through the point x=0, y=1 is by constraining a–1=0. In GaussFit this could be
accomplished by executing the exportconstraint statement. Thus, the
statement

exportconstraint (a – 1);

would accomplish the force-fitting just described.

4 . File Formats

GaussFit assumes that the data are provided to it in a tabular format. At the present
time, this is implemented with a simple text file data interchange standard that is
also used by a number of popular microcomputer programs (spreadsheets, database
managers and the like). The files are ASCII files arranged in rows and columns.
Each row is terminated by an ASCII carriage return character, and the columns in
each row are separated by white space. The first row contains the names of the
columns. A portion of a data file for the Cepheid variable problem is shown in
Figure 2. Data files also contain information on the variance-covariance matrix of
the observations (if relevant). This information is provided in additional columns of
the table. For example, the last column of Figure 2 contains the covariance between
v and vmr .

star phase vmr r v v___vmr_

2 32 0.65 -23.56 5.54 0.0001
2 33 0.62 -26.22 5.49 0.0001
2 34 0.64 -23.03 5.42 0.0001
4 1 0.33 -1.04 3.24 0.0002
4 2 0.34 -0.95 3.26 0.0002
4 3 0.39 0.04 3.37 0.0002
4 4 0.39 0.15 3.36 0.0002

Fig. 2. Sample data file. The observation line that is being processed is shown in boldface.
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The program will read each data file row by row, and will associate variables that
have been declared of type data or observation with the columns
headed by the corresponding name. As the statements in the program are executed,
the required values of the data are fetched from the current line of the data file and
used to form the equation of condition.

Parameters are found in a separate parameter file, which has the same general
format as the data files. Each parameter is found in the column which is headed by
the name of the corresponding variable. Columns for unsubscripted parameters
contain only a single number, found in the first available row of the column. Figure
3 shows a sample data file for the Cepheid variable problem discussed earlier. The
global variable b that appears in each equation of condition has the value 3.349.
In the case of subscripted variables, several values are listed in each column, one
for each possible value of the subscript. Figure 3 demonstrates how the values for a
subscripted parameter are looked up. In the figure, it is assumed that the current star
is star 4 (see boldfaced line in Figure 2). By looking in the column headed star
and finding the value 4, and then reading across the table to the alfa column, the
program finds the value alfa[4]=10.49 to be used in forming the equation of
condition.

star alfa rz b

3 12.95 108.22 3.349
5 8.99 69.10
4 10.49 43.50
2 14.48 203.66

Fig. 3. Sample parameter file. The value of b is 3.349, and the value of alfa[4] is 10.49.

The initial values of the parameters must be supplied by the user. Unfortunately,
the range of models (linear, nonlinear, simple, complex) allowed by GaussFit is so
wide that no general procedure for estimating starting values for the iteration can be
given. This task, therefore, is left to the experience of the user who is, of course,
most familiar with the data and the problem.

The table format described here is very simple, yet quite flexible. Because data in
this format are interchangeable with many microcomputer programs, it is easy to
use these programs to prepare input data and also to obtain plotted output (for
example, display of the residuals). Indeed, we find that modern integrated
spreadsheets such as Microsoft EXCEL® are so flexible and powerful that it is
actually easier to use them to examine the results from GaussFit than it would be to
program a special application to accomplish this task.
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5 . Derivatives and the Cotangent Bundle Machine

As was mentioned earlier, the objects manipulated by GaussFit (e.g., the quantities
declared in data , observation , and parameter statements) are
actually complex structures containing the value of an expression plus all of the
relevant partial derivatives. All arithmetic in GaussFit is accomplished by a special
section of code (the “cotangent bundle machine”) that can handle general objects of
this type. It is important to stress that the derivatives are calculated using the
analytic formulas, and not by numerical differentiation.

In the notation of differential geometry, derivative information is carried
explicitly by the differential of a function. The objects we manipulate are therefore
elements of the cotangent bundle of a manifold. For example, if a function
f(a,b,...,c) is expanded in Taylor’s series about the point (a0,b0,...,c0), we can
write

f = f(a0,b0,...,c0) + df = f0 + df, (4)

where the differential df carries all of the derivative information:

df = 
∂f
∂a da +  

∂f
∂b db + ... + 

∂f
∂c dc . (5)

The objects manipulated by GaussFit are of the form specified in Eqs. (4-5). The
algebra of such objects is well known. Thus to multiply f and g, we use the identity

h = fg = (f0 + df)(g0 + dg) = f0g0 + (f0dg + g0df) = h0 + dh. (6)

Similarly, a function of such an object can be calculated. For example, we can
take the logarithm of f provided that f0≠0:

log f = log f0 + 
df
f0

 . (7)

The beauty of this scheme is that the user need no longer worry about
derivatives. When any quantity is calculated, the derivatives are automatically
“carried along for the ride”. This shows itself to great advantage when the model is
too complicated to be written down as a simple equation. An example is a model we
wrote to fit double star data. In this example, each observation has to be fitted to the
projected Keplerian ellipse. To calculate the position in the orbit, Kepler’s equation
has to be solved, and it is well known that this does not have a closed-form solution
in elementary functions. Therefore, an iterative solution is required. Thus (for
e<0.1, say) we might write the following function in the GaussFit programming
language:
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kepler(e,M) {
variable  E,n;

E = M;
for (n=0;n<5;n=n+1) /* Loop 5 times */

E = M + e* sin (E);
return  E;

}

This function will be called from elsewhere in our double star model to compute
the solution of Kepler’s equation when it is needed. Notice that the eccentricity is
one of the parameters we are solving for, so that the object sent to kepler is
actually of the form e = e0 + de. Similarly, the mean anomaly M sent to kepler
will depend on the period and the time of perihelion passage in the orbit, and will
include derivatives with respect to these parameters. Thus the objects being sent to
kepler are actually elements of the cotangent bundle, and the eccentric anomaly
E returned by it will also be such an object and will include partial derivatives with
respect to the eccentricity, the period, and the time of perihelion passage. Yet to the
user it appears no more complicated than programming a straightforward numerical
solution of Kepler’s equation.

6 . A Word on Robust Estimation

The standard reduction method in GaussFit is the generalized least squares
algorithm of Jefferys (1980, 1981), which allows correlated observations,
nonlinear equations, constraints, and more than one observation per equation of
condition. For numerical stability, the solution is obtained by Householder
transformations instead of normal equations, using a new algorithm (to be
described elsewhere) especially designed for efficiency in overlapping-plate
problems.

An experimental robust estimation facility has also been implemented. This
algorithm generalizes the textbook methods of Huber (1981) to implicitly specified
nonlinear equations, exact constraints, and equations of condition containing more
than one observation, as well as partially to the case of correlated observations.
This algorithm is also a new one that will be described fully elsewhere. Two
solution methods are provided: the method of iteratively reweighted least squares
(IRLS) and Newton’s method. Both use Householder transformations to solve the
relevant matrix equations.

Robust estimation is useful when the data are likely to be corrupted by “outliers”.
In such cases, the method of least squares may be unreliable. Although least
squares is known to be the most efficient estimator if the data are normally
distributed, it rapidly becomes inefficient if outliers contaminate the data. In such
cases, robust estimators, based on noneuclidean metrics, retain their efficiency
while the least squares estimator quickly deteriorates.
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Many robust metrics have been proposed, and for simplicity we have chosen to
implement a particular one that is a good overall compromise, called “fair” (Rey
1983). We minimize the sum over all residuals u of

ρ(u) = c2
 


 
|u|

c  – log
 


 
1 + 

|u|
c (8)

where c is a parameter that is adjusted to a value that separates “small” residuals
from “large” ones. The function ρ(u) behaves like the least squares metric when u
is small, whereas for large u it grows only linearly with u so that the effect of a
large residual on the solution is small. A very large residual will hardly affect the
solution at all. The metric “fair” has many excellent properties, including
insensitivity of the results to the exact value of c. See Holland and Welsch (1977)
for a comparison of several robust metrics, including “fair”.

Actually, c  is an adjustable parameter, and varying it produces a family of
metrics of differing asymptotic relative efficiency (ARE). This is a measure of how
efficient the particular estimator is, when it is compared to the least squares
estimator on identical normally distributed data. The ARE is less than or at most
equal to 1, and we get good results with an ARE of 0.9 to 0.95. In GaussFit, the
ARE is a user-specified input parameter, and the value of c is calculated by the
program from the ARE and the actual distribution of the residuals.

In addition to this method, we have included a robust method based on
minimizing the sum of the absolute value of the residuals. This method is less
efficient than “fair” (its ARE is approximately 0.7) but it is very robust. It has been
implemented using the algorithm of Barrodale and Roberts (1978), which is based
on an improvement of the Simplex algorithm of linear programming. The primary
purpose of including this method is to give the user a simple way to examine the
residuals so that outliers can be identified and removed prior to a standard least
squares adjustment. It is most useful in the linear case, although it appears to work
for some nonlinear models as well.

7 . Conclusions

GaussFit is a new and powerful way to solve problems in least squares and robust
estimation. By including a computer language especially designed to formulate
estimation models efficiently, GaussFit relieves the user of many of the niggling
details that formerly required attention, so that he can concentrate on the broader
and ultimately more interesting tasks of finding the best model for the problem and
obtaining useful scientific results. Also, since the algorithms implemented in
GaussFit are powerful and general, the program has a wide range of application and
should be able to handle the great majority of problems that are encountered in day-
to-day practice.
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