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Abstract. H.K. Eichhorn had a lively interest in statistics during his entire scientific
career, and made a number of significant contributions to the statistical treatment
of astrometric problems. In the past decade, a strong movement has taken place
for the reintroduction of Bayesian methods of statistics into astronomy, driven by
new understandings of the power of these methods as well as by the adoption of
computationally-intensive simulation methods to the practical solution of Bayesian
problems. In this paper I will discuss how Bayesian methods may be applied to the
statistical discussion of astrometric data, with special reference to several problems
that were of interest to Eichhorn.
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1. Introduction

Bayesian methods offer many advantages for astronomical research and
have attracted much recent interest. The Astronomy and Astrophysics
Abstracts website (http://adsabs.harvard.edu/) lists 117 articles
with the keywords ‘Bayes’ or ‘Bayesian’ in the past 5 years, and the
number is increasing rapidly (there were 33 articles in 1999 alone).
At the June, 1999 meeting of the American Astronomical Society,
held in Chicago, there was a special session on Bayesian and Related
Likelihood Techniques. Another session at the June, 2000 meeting also
featured Bayesian methods. A good introduction to Bayesian methods
in astronomy can be found in Loredo (1990).

Bayesian methods have many advantages over frequentist methods,
including the following: it is simple to incorporate prior physical or sta-
tistical information into the analysis; the results depend only on what
has actually been observed and not on observations that might have
been made but were not; it is straightforward to compare models and
average over both nested and unnested models; and the interpretation
of the results is very natural, especially for physical scientists.

Bayesian inference is a systematic way of approaching statistical
problems, rather than a collection of ad hoc techniques. Very complex
problems (difficult or impossible to handle classically) are straightfor-
wardly analyzed within a Bayesian framework. Bayesian analysis is
coherent: we will not find ourselves in a situation where the analysis tells
us that two contradictory things are simultaneously likely to be true.
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With proposed astrometric missions (e.g., FAME) where the signal can
be very weak, analyses based on normal approximations may not be
adequate. In such situations, Bayesian analysis that explicitly assumes
the Poisson nature of the data may be a better choice than a normal
approximation.

2. Outline of Bayesian Procedure

In a nutshell, Bayesian analysis entails the following systematic steps:
(1) Choose prior distributions (priors) that reflect your knowledge about
each parameter and model prior to looking at the data. (2) Determine
the likelihood function of the data under each model and parameter
value. (3) Compute and normalize the full posterior distribution, con-
ditioned on the data, using Bayes’ theorem. (4) Derive summaries of
quantities of interest from the full posterior distribution by integrating
over the posterior distribution to produce marginal distributions or
integrals of interest (e.g., means, variances).

2.1. Priors

The first ingredient of the Bayesian recipe is the prior distribution.
Eichhorn was acutely aware of the need to use all available informa-
tion when reducing data, and often criticized the common practice
of throwing away useful information either explicitly or by the use of
suboptimal procedures. The Bayesian way of preventing this is to use
priors properly. The investigator is required to provide all relevant prior
information that he has before proceeding with the analysis. Moreover,
there is always prior information. For example, we cannot count a
negative number of photons, so in photon-counting situations that may
be presumed as known. Parallaxes are greater than zero. We now know
that the most likely value of the Hubble constant is in the ballpark
of 60-80 km/sec/mpc, with smaller probabilities of its being higher or
lower. Prior information can be statistical in nature, e.g., we may have
statistical knowledge about the spatial or velocity distribution of stars,
or the variation in a telescope’s plate scale.

In Bayesian analysis, our knowledge about a parameter θ is encoded
by a prior probability distribution on the parameter, e.g., p(θ | B),
where B is background information. Where prior information is vague
or uninformative, a vague prior generally recovers results similar to
a classical analysis. However, in model selection and model averaging
situations, Bayesian analysis usually gives quite different results, being
more conservative about introducing new parameters than is typical of
frequentist approaches.
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Sensitive dependence of the result on reasonable variations in prior
information should be tested, and if present indicates that no analysis,
Bayesian or other, can give reliable results. Since frequentist analyses do
not use priors and therefore are incapable of sounding such a warning,
this can be considered a strength of the Bayesian approach.

The problem of prior information of a statistical or probabilistic
nature was addressed in a classical framework by Eichhorn (1978) and
by Eichhorn and Standish (1981). They considered adjusting astromet-
ric data given prior knowledge about some of the parameters in the
problem, e.g., that the plate scale values only varied within a certain
dispersion. For the cases studied in these papers (multivariate normal
distributions), the result is similar to the Bayesian one, although the
interpretation is different.

In another example, Eichhorn and Smith (1996) studied the Lutz-
Kelker bias. The classical way to understand the Lutz-Kelker bias is
that it is more likely that we have observed a star slightly farther away
with a negative error that brings it closer in to the observed distance,
than that we have observed a slightly nearer star with a positive error
that pushes it out to the observed distance, because the number of
stars increases with increasing distance. The Bayesian notes that it is
more likely a priori that a star of unknown distance is farther away
than that it is nearer, which dictates the use of a prior that increases
with distance. The mathematical analysis gives a similar result, but the
Bayesian approach, by demanding at the outset that we think about
prior information, inevitably leads us to consider this phenomenon,
which classical astrometrists missed for a century.

2.2. The Likelihood Function

The likelihood function L is the second ingredient in the Bayesian
recipe. It describes the statistical properties of the mathematical model
of our problem. It tells us how the statistics of the observations (e.g.,
normal or Poisson data) are related to the parameters and to any
background information. It is proportional to the sampling distribution
for observing the data Y , given the parameters, but we are interested
in its functional dependence on the parameters:

L(θ;Y,B) ∝ p(Y | θ,B)

The likelihood is known up to a constant but arbitrary factor which
cancels out in the analysis.

Like Bayesian estimation, maximum likelihood estimation (upon
which Eichhorn based many of his papers) is founded upon using the
likelihood function. This is good, because the likelihood function is
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always a sufficient statistic for the parameters of the problem. Further-
more, according to the important Likelihood Principle (Berger, 1985),
it can be shown that under very general and natural conditions, the
likelihood function contains all of the information in the data that
can be used for inference. However, the likelihood is not the whole
story. Maximum likelihood by itself does not take prior information into
account, and it fails badly in some notorious situations, like errors-in-
variables problems (i.e., both x and y have error), when the variance of
the observations is estimated. Bayesian analysis gets the right answer
in this case; classical analysis relies on a purely ad hoc factor of 2
correction. A purely likelihood approach presents other problems as
well.

2.3. Posterior Distribution

The third part of the Bayesian recipe is to use Bayes’ theorem to calcu-
late the posterior distribution. The posterior distribution encodes what
we know about the parameters and model after we observe the data.
Thus, Bayesian analysis models a process of learning from experience.

Bayes’ theorem says that

p(θ | Y,B) =
p(Y | θ,B)p(θ | B)

p(Y | B)
(1)

It is a trivial result of probability theory. The denominator

p(Y | B) =
∫
p(Y | θ,B)p(θ | B)dθ (2)

is just a normalization factor and can often be dispensed with.
The posterior distribution after observing data Y can be used as the

prior distribution for new data Z, which makes it easy to incorporate
new data into an analysis based on earlier data. It can be shown that
any coherent model of learning is equivalent to Bayesian learning. Thus
in Bayesian analysis, results take into account all known information,
do not depend on the order in which the data (e.g, Y and Z) are
obtained, and are consistent with common sense inductive reasoning as
well as with standard deductive logic. For example, if A entails B, then
observing B should support A (inductively), and observing ¬B should
refute A (logically).

2.4. Summarizing Results

The fourth and final step in our Bayesian recipe is to use the posterior
distribution we have calculated to give us summary information about
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the quantities we are interested in. This is done by integrating over the
posterior distribution to produce marginal distributions or integrals
of interest (e.g., means, variances). Bayesian methodology provides a
simple and systematic way of handling nuisance parameters required
by the analysis but which are of no interest to us. We simply integrate
them out (marginalize them) to obtain the marginal distribution of the
parameter(s) of interest:

p(θ1 | Y,B) =
∫
p(θ1, θ2 | Y,B)dθ2 (3)

Likewise, computing summary statistics is simple. For example, pos-
terior means and variances can be calculated straightforwardly:

θ̄1 | Y,B =
∫
θ1p(θ1 | Y,B)dθ1 (4)

3. Model Selection and Model Averaging

Eichhorn and Williams (1963) studied the problem of choosing between
competing astrometric models. Often the models are empirical, e.g.,
polynomial expansions in the coordinates. The problem is to avoid the
Scylla of underfitting the data, resulting in a model that is inadequate,
and the Charybdis of overfitting the data (i.e., fitting noise as if it were
signal). Navigating between these hazards is by no means trivial, and
standard statistical methods such as the F-test and stepwise regression
are not to be trusted, as they too easily reject adequate models in favor
of overly complex ones.

Eichhorn and Williams proposed a criterion based on trading off
the decrease in average residual against the increase in the average
error introduced through the error in the plate constants. The Bayesian
approach reveals how these two effects should be traded off against
each other, producing a sort of Bayesian Ockham’s razor that favors
the simplest adequate model. The basic idea behind the Bayesian Ock-
ham’s razor was discussed by Jefferys and Berger (1992). Eichhorn
and Williams’ basic notion is sound; but in my opinion the Bayesian
approach to this problem is simpler and more compelling, and unlike
standard frequentist approaches, it is not limited to nested models.
Moreover, it allows for model averaging, which is unavailable to any
classical approach.
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3.1. Bayesian Model Selection

Given models Mi, which depend on a vector of parameters θ, and given
data Y , Bayes’ theorem tells us that

p(θ,Mi | Y ) ∝ p(Y | θ,Mi)p(θ |Mi)p(Mi) (5)

The probabilities p(θ | Mi) and p(Mi) are the prior probabilities
of the parameters given the model and of the model, respectively;
p(Y | θ,Mi) is the likelihood function, and p(θ,Mi | Y ) is the joint
posterior probability distribution of the parameters and models, given
the data. Note that some parameters may not appear in some models,
and there is no requirement that the models be nested.

Assume for the moment that we have supplied priors and performed
the necessary integrations to produce a normalized posterior distribu-
tion. In practice this is often done by simulation using Markov Chain
Monte Carlo (MCMC) techniques, which will be described later. Once
this has been done, it is simple in principle to compute posterior prob-
abilities of the models:

p(Mi | Y ) =
∫
p(θ,Mi | Y )dθ (6)

The set of numbers p(Mi | Y ) summarizes our degree of belief in
each of the models, after looking at the data. If we were doing model
selection, we would choose the model with the highest posterior prob-
ability. However, we may wish to consider another alternative: model
averaging.

3.2. Bayesian Model Averaging

Suppose that one of the parameters, say θ1, is common to all models
and is of particular interest. For example, θ1 could be the distance to a
star. Then instead of choosing the distance as inferred from the most
probable model, it may be better (especially if the models are empirical)
to compute its marginal probability density over all models and other
parameters. This in essence weights the parameter as inferred by from
each model by the posterior probability of the model. We obtain

p(θ1 | Y ) =
∑
i

∫
p(θ1, θ2, . . . , θn,Mi | Y )dθ2 . . . dθn (7)

Then, if we are interested in summary statistics on θ1, for exam-
ple its posterior mean and variance, we can easily calculate them by
integration:

θ̄1 =
∫
θ1p(θ1 | Y )dθ1

Var(θ1) =
∫

(θ1 − θ̄1)2p(θ1 | Y )dθ1 (8)
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4. Simulation

Until recently, a major practical difficulty has been computing the
required integrals, limiting Bayesian inference to situations where re-
sults can be obtained exactly or with analytic approximations. In the
past decade, considerable progress has been made in solving the com-
putational difficulties, particularly with the development of Markov
Chain Monte Carlo (MCMC) methods for simulating a random sample
(draw) from the full posterior distribution, from which marginal distri-
butions and summary means and variances (as well as other averages)
can be calculated conveniently (Dellaportas et al., 1998; Tanner, 1993;
Müller, 1991). These have their origin in physics. Metropolis-Hastings
and Gibbs sampling are two popular schemes that originated in early
attempts to solve large physics problems by Monte Carlo methods.

The basic idea is this: Starting from an arbitrary point in the space
of models and parameters, and following a specific set of rules—which
depend only on the unnormalized posterior distribution—we generate a
random walk in model and parameter space, such that the distribution
of the generated points converges to a sample drawn from the underly-
ing posterior distribution. The random walk is a Markov chain: That is,
each step depends only upon the immediately previous step, and not on
any of the earlier steps. Many rules for generating the transition from
one state to the next are possible. All converge to the same distribution.
One attempts to choose a rule that will give efficient sampling with a
reasonable expenditure of effort and time.

4.1. The Gibbs Sampler

The Gibbs sampler is a scheme for generating a sample from the full
posterior distribution by sampling in succession from the conditional
distributions. Thus, let the parameter vector θ be decomposed into a
set of subvectors θ1, θ2, . . . θn. Suppose it is possible to sample from the
full conditional distributions

p(θ1 | θ2, θ3, . . . , θn)
p(θ2 | θ1, θ3, . . . , θn)

...
p(θn | θ1, θ2, . . . , θn−1)

Starting from an arbitrary initial vector θ0 = (θ0
1, θ

0
2, . . . , θ

0
n), gener-

ate in succession vectors θ1, θ2, . . . , θk by sampling in succession from
the conditional distributions

p(θk1 | θk−1
2 , θk−1

3 , . . . , θk−1
n )
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p(θk2 | θk1 , θk−1
3 , . . . , θk−1

n )
...

p(θkn | θk1 , θk2 , . . . , θkn−1)

with θk = (θk1 , θ
k
2 , . . . , θ

k
n). In the limit of large k, the sample thus

generated will converge to a sample drawn from the full posterior
distribution.

4.2. Example of Gibbs Sampling

Suppose we have normally distributed observations Xi, i = 1, . . . , N , of
a parameter x, with unknown variance σ2. The likelihood is

p(X | x, σ2) ∝ σ−N exp

(
−
∑
i

(Xi − x)2/2σ2

)
(9)

Assume a flat (uniform) prior for x and a “Jeffreys” prior 1/σ2 for
σ2. The posterior is proportional to the prior times the likelihood:

p(x, σ2 | X) ∝ σ−(N+2) exp

(
−
∑
i

(Xi − x)2/2σ2

)
(10)

The full conditional distributions are: for x, a normal distribution
with mean equal to the average of the X’s and variance equal to σ2/N
(which is known at each Gibbs step); and −∑i (Xi − x)2/σ2 has a
chi-square distribution with N degrees of freedom. Those familiar with
least squares will find this result comforting.

4.3. Metropolis-Hastings Step

The example is simple because the conditional distributions are all
standard distributions from which samples can easily be drawn. This
is not usually the case, and we would have to replace Gibbs steps with
another scheme. A Metropolis-Hastings step involves proposing new
value of θ∗ by drawing it from a suitable proposal distribution q(θ∗ | θ),
where θ is the value at the previous step. Then a calculation is done to
see whether to accept the proposed θ∗ as the new step, or to keep the old
θ as the new step. If we retain the old value, the Metropolis sampler does
not “move” the parameter θ at this step. If we accept the new value,
it will move. We choose q(θ∗ | θ) so that we can easily and efficiently
generate random samples from it, and with other characteristics that
we hope will yield efficient sampling and rapid convergence to the target
distribution.
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Specifically, if p(θ) is the target distribution from which we wish to
sample, first generate θ∗ from q(θ∗ | θ). Then calculate

α = min
[
1,
p(θ∗)q(θ | θ∗)
p(θ)q(θ∗ | θ)

]
(11)

Then generate a random number r uniform on [0, 1]. Accept the pro-
posed θ∗ if r ≤ α, otherwise keep θ. Note that if p(θ∗) = q(θ∗ | θ) for
all θ, θ∗, then we will always accept the new value. In this case the
Metropolis-Hastings step becomes an ordinary Gibbs step. Although
the Metropolis-Hastings steps are guaranteed to produce a Markov
chain with the right limiting distribution, one often gets better per-
formance the more closely q(θ∗ | θ) approximates p(θ∗).

5. A Model Selection/Averaging Problem

With T.G. Barnes of McDonald Observatory and J.O. Berger and P.
Müller of Duke University’s Institute for Statistics and Decision Sci-
ences, I have been working on a Bayesian approach to the problem of
estimating distances to Cepheid variables using the surface-brightness
method. We use photometric data in several colors as well as Doppler
velocity data on the surface of the star to determine the distance
and absolute magnitude of the star. Although this problem is not
astrometric per se, it is nonetheless a good example of the applica-
tion of Bayesian ideas to problems of this sort and illustrates several
of the points made earlier (prior information, model selection, model
averaging).

We model the radial velocity and V -magnitude of the star as Fourier
polynomials of unknown order. Thus, for the velocities:

vr = v̄r + ∆vr (12)

where vr is the observed radial velocity and v̄r is the mean radial
velocity. With τ denoting the phase and Mi the order of the polynomial
for a particular model we have

∆vr =
Mi∑
j=1

(aj cos jτ + bj sin jτ) (13)

This becomes a model selection/averaging problem because we want
to use the optimal order Mi of Fourier polynomial and/or we want to
average over models in an optimal way. For example, as can be seen
in Figures 1-3—which show fits of the velocity data for the star T
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Monocerotis by Fourier polynomials of orders 4 through 6—to the eye
the fourth order fit is clearly inadequate, whereas a sixth-order fit seems
to be introducing artifacts and appears to be overfitting the data. The
question is, what will the Bayesian analysis tell us?

Figure 1. The radial velocity data for T Mon fitted with a fourth-order trigonometric
polynomial. The arrow points to a physically real “glitch” in the velocity. This fit is
clearly inadequate.

Figure 2. The radial velocity data for T Mon fitted with a fifth-order trigonometric
polynomial. This fit seems quite adequate to the data, including the fit to the “glitch”
of Figure 1.
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Figure 3. The radial velocity data for T Mon fitted with a sixth-order trigonometric
polynomial. This fit is not clearly better than the fit of Figure 2, and shows some
evidence of overfitting, as indicated by the arrows A − C; these bumps are not
supported by any data (cf. Figure 2). Bump A, in particular, is much larger than
in the lower order fit; Bumps B and C are probably a consequence of the algorithm
attempting to force the curve nearly through the adjacent points.

The ∆-radius of the star is proportional to the integral of the ∆-
radial velocity:

∆r = −f
Mi∑
j=1

(aj sin jτ − bj cos jτ)/j (14)

where f is a positive numerical factor.
The relationship between the radius and the photometry is given by

V = 10(C − (A+B(V −R)− 0.5 log10(φ0 + ∆r/s))) (15)

where the V and R magnitudes are corrected for reddening, A, B, and
C are known constants, φ0 is the angular diameter of the star and s is
the distance to the star.

The resulting model is fairly complex, simultaneously estimating a
number of Fourier coefficients and nuisance parameters (up to 40 vari-
ables) for a large number of distinct models (typically 50), along with
the parameters of interest (e.g., distance and absolute magnitudes). The
Markov chain provides a sample drawn from the posterior distribution
for our problem as a function of all of these variables, including model
specifier. From it we obtain very simply the marginal distributions of
parameters of interest as the marginal distributions of the sample, and
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means and variances of parameters (or any other desired quantities) as
sample means and sample variances based on the sample.

Selected results from the MCMC simulation for T Monocerotis can
be seen in Figures 4-7. The velocity simulation (Figure 4) confirms what
our eyes already saw in Figures 1-3, namely, that the fifth-order velocity
model is clearly the best. Nearly all the posterior probability for the
velocity models is assigned to the fifth-order model, with just a few
percent to the sixth-order model. Perhaps more interestingly, Figure
5 shows that the third and fourth-order photometry models get nearly
equal posterior probability. This means that the posterior marginal
distribution for the parallax of T Mon (Figure 6) is actually averaged
over models, with nearly equal weight coming from each of these two
photometry models. The simulation history of the parallax is shown in
Figure 7; one can follow how the simulation stochastically samples the
parallax.
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Figure 4. Posterior marginal distribution of velocity models for T Mon.

5.1. Significant Issues on Priors

Cepheids are part of the disk population of the galaxy, and for low
galactic latitudes are more numerous at larger distances s. So distances
calculated by maximum likelihood or with a flat prior will be affected by
Lutz-Kelker bias, which can amount to several percent. The Bayesian
solution is to recognize that our prior distribution on the distance of
stars depends on the distance. For a uniform distribution it would be
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T Mon: V Photometry Model Posterior Probability
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Figure 5. Posterior marginal distribution of photometry models for T Mon.

T Mon: Parallax
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Figure 6. Posterior marginal distribution of the parallax of T Mon.

proportional to s2ds, which although an improper distribution, gives a
reasonable answer if the posterior distribution is normalizable.

In our problem we have information about the spatial distribution
of Cepheid variable stars that would make such a simple prior inap-
propriate. Since Cepheids are part of the disk population, their density
decreases with distance from the galactic plane. Therefore we chose a
spatial distribution of stars that is exponentially stratified as we go
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Figure 7. Simulation history of the parallax of T Mon.

away from the galactic plane. We adopted a scale height of 97 ± 7
parsecs, and sampled the scale height as well. Our prior on the distance
is

p(s) = ρ(s)s2ds

where ρ(s) is the spatial density of stars. For our spatial distribution
of stars we have

ρ(s) = exp(−z/|z0|) (16)

where z0 is the scale height, z = s sinβ, and β is the latitude of the
star.

The priors on the Fourier coefficients must also be chosen carefully. If
they are too vague and spread out, significant terms may be rejected. If
they are too sharp and peaked, overfitting may result. For our problem
we have used a maximum entropy prior, of the form

p(c) ∝ exp(−c′X ′Xc/2σ2) (17)

where c = (a, b) is the vector of Fourier coefficients, X is the design
matrix of the sines and cosines for the problem, and σ is a parameter
to be estimated (which itself needs its own vague prior). This maxi-
mum entropy prior expresses the proper degree of ignorance about the
Fourier coefficients. It has been recommended by Gull (1988) in the
context of maximum entropy analysis and is also a standard prior for
this sort of problem known to statisticians as a Zellner G-prior.
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6. Summary

Bayesian analysis is a promising statistical tool for discussing astro-
metric data. It suggests natural approaches to problems that Eichhorn
considered during his long and influential career. It requires us to think
clearly about prior information, e.g., it naturally forces us to consider
the Lutz-Kelker phenomenon from the outset, and guides us in building
it into the model using our knowledge of the spatial distribution of
stars. It effectively solves the problem of accounting for competing as-
trometric models by Bayesian model averaging. We can expect Bayesian
and quasi-Bayesian methods to play important roles in missions such
as FAME and SIM, which challenge the state of the art of statistical
technology.
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