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SUMMARY

Cepheid variables are a class of pulsating variable stars with the useful property
that their periods of variability are strongly correlated with their absolute lumi-
nosity. Once this relationship has been calibrated, knowledge of the period gives
knowledge of the luminosity. This makes these stars useful as “standard can-
dles” for estimating distances in the universe. This paper updates and expands
work reported by Jefferys and Barnes (1999). We consider fully Bayesian infer-
ence using reversible-jump MCMC simulation that takes as data photometric and
velocity information and gives as output posterior inference for useful physical
information such as the absolute luminosity of the star, its distance, its radius, and
other parameters. We model the photometry and velocities as Fourier polynomials
with an unknown or selectable number of terms; the photometry and velocities
are connected by nonlinear relations involving the physical parameters of inter-
est. From amongst these models with varying numbers of Fourier coefficients
we select models with the highest posterior probability, and obtain information
on the physical parameters averaged over the models, with weights proportional
to the posterior probabilities of the models. We discuss issues concerning priors,
effectiveness of the sampling, and the practical results of our research program.
We briefly discuss alternative photometric and velocity models using wavelets
instead of Fourier polynomials, and alternative approaches to the priors.

Keywords: MODEL SELECTION; MODEL AVERAGING; REVERSIBLE JUMP MCMC; CEPHEID
VARIABLE STARS.

1. A LITTLE ASTRONOMY—WHAT’S THE GOAL?

Cepheid variable stars pulsate, regularly varying their luminosity (light output) and size.
We can measure both the velocity of the surface of the star as it moves in and out, and the
variable luminosity and color of the star. There is a mathematical relationship between these
quantities that enables us to infer the distance to the star. The period of pulsation is related
to the luminosity through theperiod-luminosity relationship, according to which the log
of the luminosity is a linear function of the log of the period. Determining the zero-point
(intercept) of the period-luminosity relationship is a fundamental problem in astrophysics.
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These stars are “standard candles” for determining the distances to the galaxies in which
they are found. Cepheid variables are thus fundamental to understanding the cosmological
distance scale, i.e., the size and age of the universe.

2. MATHEMATICAL MODEL AND LIKELIHOOD FUNCTION

We have unequally-spaced observations of velocity dataUi, i = 1, . . . ,m, and photometry
data consisting of magnitudeVi, i = 1, . . . , n and color indexCi, i = 1, . . . , n. We are
given standard deviationsσUi , σVi , σCi . However, we are not very confident of these
numbers and take the variances of the data to be given byσ2

Ui
/τU , σ2

Vi
/τV , σ2

Ci
/τC , where

the numbers τU , τV , τC ,are to be estimated. Letui, vi , andci denote unknown mean
velocity, magnitude, and color index, respectively. Conditional onui, vi andci we assume
independent normal distributions

Ui ∼ N(ui, σ2
Ui
/τU )

Vi ∼ N(vi, σ2
Vi
/τV ) (1)

Ci ∼ N(ci, σ2
Ci
/τC)

The velocitiesu and photometry(v, c) are periodic functions of the time, and so are
functions of observed phasesθi where0 ≤ θi < 1. An obvious strategy is to represent
them as Fourier polynomials of some unknown or selectable order, resulting in a model
selection/averaging problem. We need to do this only foru andv, since the colorsc are
mathematically related tou andv through (Eq. 2) below.M andN are the unknown order
of the Fourier polynomials for theU andV data, respectively. The polynomials contain
2M + 1 and2N + 1 terms, respectively, including the leading constant terms. Thus we
write

u = u0 + Xuau
v = v0 + Xvav

whereu0 andv0 are the mean velocity and luminosity,Xu andXv are (m × 2M) and
(n × 2N) design matrices consisting of sines and cosines of multiple angles, evaluated at
the phases of the data, andau andav are vectors of Fourier coefficients. Note that the
velocity data and photometry data are taken independently, and the phases in general are
different. Because the velocity and photometry data are taken at different times, there will
also be an unknown phase error∆θ between the two (due to imperfect knowledge of the
period of the star).

Figures (1-3) show maximum likelihood fits of the velocity data for the star T Mono-
cerotis (T Mon). As can be seen, the fourth-order model does not appear to fit the data
adequately. In particular, a physically real “glitch” near phase 0.8 is not fitted well. The
fifth-order model seems to do an adequate job, but the sixth-order model shows evidence
of overfitting (A–C). It will be interesting to see how these results compare to the results of
our Bayesian analysis.

We also have the nonlinear relationship

ci =
1
β

(0.1vi − α+ 0.5 log (φ0 + ∆Ri/s)) (2)
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where(α, β) are known constants,φ0 ands are the angular size and distance of the star (to
be estimated), and∆Ri is calculated from theau by integrating the velocity term-by-term
with respect to the phase. This allows us to write down the likelihood function directly from
Eqs. (1). Some of the parameters appear in the resulting likelihood function in awkward
and nonlinear ways that will make straightforward Gibbs sampling impossible. A suitably
informed Metropolis scheme will be needed.

Figure 1. The radial velocity data for T Mon fitted with a fourth-order trigono-
metric polynomial. The arrow points to a physically real “glitch” in the velocity.
This fit is clearly inadequate.

Figure 2. The radial velocity data for T Mon fitted with a fifth-order trigonometric
polynomial. This fit seems quite adequate to the data, including the fit to the
“glitch” of Figure 1.
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Figure 3. The radial velocity data for T Mon fitted with a sixth-order trigono-
metric polynomial. This fit is not clearly better than the fit of Figure 2, and shows
some evidence of overfitting, as indicated by the arrowsA−C; these bumps are
not supported by any data (cf. Figure 2). BumpA, in particular, is much larger
than in the fifth order fit; BumpsB andC are probably a consequence of the
algorithm attempting to force the curve nearly through the adjacent points.

3. PRIORS

The posterior inference is summarized in the posterior distribution on the unknown param-
eters

(1) The orders of the Fourier models,M andN .

(2) The precision parametersτU , τV , τC .

(3) The angular diameterφ0 and the unknown phase error∆θ.

(4) The distances.

(5) The interceptsu0 andv0 and the Fourier coefficientsau, av.

Indirectly the posterior distribution is also a function of the hyper parameters which define
the probability model.

We expect the order of the models to be modest; we choose a uniform prior on the
models(M,N) up to some cut-off, and zero beyond.

The precision parametersτU , τV , τC are given standard Jeffreys priors. Probably we
could give them more informative priors but it didn’t seem necessary in this case. So

p(τU ) ∝ 1/τU , p(τV ) ∝ 1/τV , p(τC) ∝ 1/τC
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We take the priors on∆θ andφ0 to be flat. They are well-determined by the data and
we have no real prior information that would override the data.

Failure to take the spatial distribution of the stars into account would result in the
so-calledLutz-Kelker bias, which is a bias in the estimated distance. Astronomers realized
this only fairly recently (but it is obvious to a Bayesian since it is a consequence of a clearly
inappropriate (flat) prior on the distance). The spatial distribution of Cepheid variables is
known to be flattened with respect to the galactic plane. We choose a spatial distribution of
stars that is exponentially stratified as we go away from the galactic plane. We adopted a
scale heightz0 = 97 ± 7 parsecs (1 parsec=3 × 1013 km), and sampledz0. Our prior on
the distance looks like

p(s) ∝ ρ(s)s2ds,

whereρ(s) is the spatial density of stars:

ρ(s) ∝ exp (−|z|/z0)

with z = s sinφ, andφ is the galactic latitude of the star (its angle above the galactic plane).
The constant termsu0 andv0 get a flat prior. Unlike the terms in sines and cosines,

which represent the physics of the pulsations, they are just intercepts reflecting an arbitrary
choice of coordinates. The priors on the periodic Fourier coefficientsau andav must be
chosen carefully. If our prior is too vague, significant terms may be rejected, but if it is
too sharp, overfitting may result. For our models we have used a Zellner G-prior, which is
equivalent to a maximum entropy prior (Gull 1988), of the form

p(a) ∝ exp
(
−a′X′Xa

2
τ

)
wherea is the vector of Fourier coefficients,X is the design matrix of sines and cosines for
the problem, andτ is a hyperparameter.

The hyperparametersτ also need priors. Since they are scale parameters, one might
naively put a Jeffreys prior on these; however, the resulting posterior distribution would be
improper (Gull 1988), so a slight adjustment is required. Thus, we pick a prior onτ of the
form

p(τa) ∝ 1
τ3/2

4. SAMPLING STRATEGY

We employ a reversible-jump MCMC algorithm to generate posterior distributions and
estimates. We use ideas outlined by Dellaportaset al. (1997) in their excellent tutorial
paper on the subject.

Fortunately, the full conditional distributions for the precision parameters and the
hyperparameters are standardχ2 distributions and so the sampling for these parameters can
be accomplished with straightforward Gibbs sampling, that is, these parameters are updated
by draws from the respective complete conditional posterior distributions.

For ∆θ, φ0 ands, we use a random-walk Metropolis algorithm, using as our pro-
posal a multinormal distribution centered on the currently imputed parameter values, with
a variance-covariance matrix that is proportional to the variance-covariance matrix for the
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linearized least-squares problem for just these three parameters. This means linearizing the
logarithm in the expression forci (Eq. 2). The idea behind this strategy is that we’ll take
longer steps in directions with larger variances and shorter steps in directions with smaller
variances, while obtaining good sampling in directions that are not parallel to the axes de-
fined by the parameters. This turns out to have very good acceptance-rejection probabilities
and good sampling of the parameter space for these parameters.

The sampling forau andav is more direct. We base our proposal for a Metropolis step
on the solution of the linear least squares problems generated by

U ∼ N(u0 + Xuau, σ2
U/τU )

V ∼ N(v0 + Xvav, σ2
V /τV )

This results in a near-Gibbs sampler for these parameters. It isn’t quite Gibbs because of
the nonlinear way in whichau andav appear in the full likelihood. However, it is very
close; the acceptance probabilities for these proposals are over 90%, and the sampling of
the Fourier parameter space is very effective.

The steps inau andav are included within a step that proposes a jump between models.
Thus, if the current model has a certain number of parameters, we propose a jump to a model
with a (possibly different) number of parameters, and simultaneously propose new values
for all the Fourier coefficients. To make the sampling efficient, during the burn-in phase we
also estimate the posterior probabilites of the individual models. We use this as the basis for
the proposal probabilities of new models during the computation phase of the calculation.
Thus we will propose models of higher posterior probability with greater frequency.
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Figure 4. Posterior marginal distribution of velocity models for T Mon.
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5. RESULTS

As shown in Figure 4, the Bayesian analysis does indeed agree with what our eyes
already told us about the velocity model. The fifth-order model is overwhelmingly preferred.
The photometry model (Figure 5) shows that the third and fourth-order models are about
equally good, so our sampler will average over these two models. Figure 6 shows the
posterior distribution of the parallax$ = 1/s for T Mon, and Figure 7 shows the simulation
history of the parallax, demonstrating good acceptance rates for the proposals.
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Figure 5. Posterior marginal distribution of photometry models for T Mon.
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Figure 6. Posterior marginal distribution of the parallax of T Mon.
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Figure 7. Simulation history of the parallax of T Mon.

6. ALTERNATIVE APPROACHES

We are investigating other functional forms to represent the velocity and photometry data. In
particular, the velocity curve suffers a steep drop-off nearθ = 1, which results in overshoot
and “ringing” due to the global nature of Fourier polynomials combined with the Gibbs
phenomenon; a more local representation using wavelets looks very promising. We are
also investigating other priors on the Fourier coefficients that have been used successfully
in other contexts. One promising approach is the “Expected Posterior Prior” developed by
Pérez (1998).

Of these approaches, the wavelet analysis is the furthest advanced. We have adopted a
suggestion of Vannucci and Corradi (1999). So far we have applied it only to the problem
of fitting the velocity curve; application to the full astronomical problem of determining
distances is in the future.

Their idea is to put our prior on thefunctions f(θ) rather than on the wavelet coeffi-
cients. We letfi = f(θi) be defined on an equally spaced grid, and consider the Gaussian
process

di = fi − fi−1

where

d = (d1, d2, . . . , dn) ∼ N(0,∆)
∆ij = λ exp(−ρ|i− j|)

This leads to a prior on thef ’s of the form

p(f0, f1, . . . , fn−1 | f0 = fn) = N(0, λV )
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whereV has a prescribed form. This in turn induces a multivariate normal prior on the
wavelet coefficients with variance-covariance matrix that can be computed fromV either
explicitly or preferably (as Vannucci and Corradi do) as a bivariate wavelet decomposition
of V .

As can be seen from Figure 8, our preliminary results show better behavior around the
“overshoot” region near phase 0.05 (cf. Figures 2 and 3), and also adequately address the
“glitch” near phase 0.8. So our wavelet approach appears promising.
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Figure 8. Wavelet fit of velocity data for T Mon. Shown are contour lines for
the posterior distribution of the velocity as a function of phase; the thick smooth
line in the center is the posterior mean curve. The grey shaded margins show
central 50% (light grey) and central 90% (dark grey) intervals. The points are
the observed data points, with little error bars showing 2 standard deviations for
the measurement error.

9



REFERENCES

Dellaportas, P., Forster, J. and Ntzoufras, I. (1997). On Bayesian model and variable selection
using MCMC. Private communication. Available as
http://www.stat-athens.aueb.gr/~ptd/gvs.ps

Gull, S. (1988). Bayesian inductive inference and maximum entropy.Maximum-Entropy and
Bayesian Methods in Science and Engineering, Volume 1: Foundations.(G. J. Erickson
and C. R. Smith, eds.). Dordrecht: Kluwer, 53–74.

Jefferys, W. H. and Barnes, T. G. (1999). Bayesian analysis of Cepheid variable data.
Bayesian Statistics 6(J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith,
eds.). Oxford: University Press, 777–783.
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