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Bayesian Analysis and Astronomy

• Bayesian analysis offers many advantages for astronomical
research and has attracted much recent interest.

• Astronomy and Astrophysics Abstracts lists 88 articles with
the keywords ‘Bayes’ or ‘Bayesian’ in the past 5 years, and the
number is increasing rapidly.

• This June, at the AAS meeting in Chicago, there was a special
session on Bayesian and Related Likelihood Techniques. See

http://www.aas.org/meetings/aas194/prelim/statistics.html

My Duke colleague, Jim Berger, was the invited statistician for
that session.
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Advantages of Bayesian Methods

• Bayesian methods allow us to do things that would be difficult
or impossible with standard (frequentist) analysis.

• It is easy to incorporate prior physical or statistical
information

• It is coherent: we will not find ourselves in a situation
where the analysis tells us that two contradictory things are
simultaneously likely to be true.

• Analysis depends only on what is actually observed, not on
observations that might have been made but were not.

• It can compare models and average over models, whether
nested or not.

• Correct interpretation of results is much more natural,
especially for physical scientists.
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Advantages of Bayesian Methods

• Bayesian analysis naturally incorporates prior information into
the analysis. Indeed, the investigator is required to provide
relevant prior information.

• Prior information can include physical constraints, e.g., that
both background and signal are greater than zero, or that a
photon does not arrive after we detect it.

• Prior information can also include statistical information,
e.g., we already have some prior knowledge of the spatial
distribution of stars, or of the value of the Hubble constant,
or other information.

• Sensitive dependence on reasonable prior information
indicates that no analysis, Bayesian or other, can give
reliable results.
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Basic Method

• In a nutshell, a Bayesian analysis entails the following steps:

• Choose prior distributions (“priors”) that reflect your
knowledge about each parameter and model prior to
looking at the data

• Determine the likelihood function of the data under each
model and parameter value

• Compute and normalize the full posterior distribution,
conditioned on the data, using Bayes’ theorem

• Derive summaries of quantities of interest from the full
posterior distribution by marginalization and/or
computation of means.
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Priors

• Choose prior distributions (“priors”) that reflect your
knowledge about each parameter and model prior to looking at
the data

• There is always some prior information about the problem.
For example, we cannot count a negative number of
photons. Parallaxes are greater than zero. We now know
that the most likely value of the Hubble constant is in the
ballpark of 60-80 km/sec/mpc (say) with smaller
probabilities of its being higher or lower.

• In Bayesian analysis, ones uncertainty about an unknown
quantity is expressed by setting a prior distribution on the
quantity in question, e.g.,              ,   where B  is further
background information.

p B( | )θ
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Likelihood Function

• Determine the likelihood function of the data under each model
and parameter value.

• The likelihood function describes the statistical properties
of the mathematical model of our problem. It tells us how
the statistics of the observations (e.g., normal or Poisson
data) are related to the parameters and any background
information.

• It is nothing but the sampling distribution for observing the
data, given the parameters, but we are interested in its
functional dependence on the parameters:

• The likelihood is known up to a constant but arbitrary
factor which cancels out in the analysis.

L y B p y B( ; | ) ( | , )θ θ∝
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Posterior Distribution

• Compute and normalize the full posterior distribution,
conditioned on the data, using Bayes’ theorem.

• The posterior distribution encodes what we know about the
parameters and model after we observe the data. Thus,
Bayesian analysis models learning .

• Bayes’ theorem says that

• Bayes’ theorem is a trivial result of probability theory. The
denominator is just a normalization factor and can often be
dispensed with

p y B
p y B p B

p y B
( | , )

( | , ) ( | )
( | )

θ θ θ=

p y B p y B p B d( | ) ( | , ) ( | )= ∫ θ θ θ
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Bayes’ Theorem (Proof)

• By standard probability theory,

from which Bayes’ theorem follows immediately.

p y B p y B p y B p y B p B( | , ) ( | ) ( , | ) ( | , ) ( | )θ θ θ θ= =

Bayesian Model Averaging/Cepheid Distance Scale 10/13/99 11

Posterior Distribution

• The posterior distribution after observing data y  can be used
as the prior distribution for new data z , which makes it easy to
incorporate new data into an analysis based on earlier data.

• It can be shown that any coherent model of learning is
equivalent to Bayesian learning.
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Marginalization

• Derive summaries of quantities of interest from the full
posterior distribution by marginalization and/or computation
of means.

• Bayesian methodology provides a simple and uniform way
of handling nuisance parameters that are required by the
analysis but are of no interest to us. We simply integrate
them out (marginalize them) to obtain the marginal
distribution of any parameter(s) we are interested in:

p y B p y B d( | , ) ( , | , )θ θ θ θ1 1 2 2= ∫
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Bayesian Model Selection/Averaging

• Given models Mi, which depend on a vector of parameters ϑ ,
and given data Y,  Bayes’ theorem tells us that

where the proportionality constant is chosen so that the left
hand side is a normalized probability. The probabilities
p (ϑ  | M ) and p (M ) are the prior probabilities of the
parameters given the model and of the model, respectively;
p (Y |ϑ  , M ) is the likelihood function, and p (ϑ , M |Y ) is the
joint posterior probability distribution of the parameters and
models, given the data.

• Note that some parameters may not appear in some models,
and there is no requirement that the models be nested.

p M Y p Y M p M p Mi i i i( , | ) ( | , ) ( | ) ( )ϑ ϑ ϑ∝ ,
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Bayesian Model Selection

• We assume for the moment that we have supplied priors and
performed the necessary integrations to produce a normalized
posterior distribution. In practice this is often done by
simulation using Markov Chain Monte Carlo (MCMC).

• Once this has been done, it is simple in principle, if more
difficult in practice, to compute posterior probabilities of the
models:

• This set of numbers summarizes our degree of belief in each of
the models, after looking at the data. If doing model selection,
we choose the model with the highest posterior probability

p M Y p M Y di i( | ) ( , | ),= ∫ ϑ ϑ
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Bayesian Model Averaging

• Suppose that one of the parameters, say ϑ1, is common to all
models and is of particular interest. For example, in the present
application it might be the distance to a star. Then instead of
choosing the distance as inferred from the most probable
model, it may be better (especially if the models are empirical)
to compute its marginal probability density over all models
and other parameters:

• Then, if we are interested in an estimate of ϑ1 we can (for
example) compute its posterior mean and variance:

p Y p M Y d d
i n i n( | ) ( ,... , | ) ...,ϑ ϑ ϑ ϑ ϑ1 1 2= ∑ ∫

ˆ ( | ) , ( ) ( ˆ ) ( | )ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ1 1 1 1 1 1 1
2

1 1= = −∫ ∫p Y d p Y d Var
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Practical Application

• A major difficulty has been to carry out the integrals required
to do the computations in practice, limiting the method to
situations where exact results can be obtained analytically or
approximately
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Practical Application

• The first of these is no longer considered a serious problem by
most statisticians. Not only is classical (“frequentist”)
statistical methodology also shot through with subjective
decisions (though they are better disguised and more arbitrary
than in Bayesian methodology, where the subjectivity is
summarized publicly in the prior), but also most classical
results (excepting p-values) have straightforward Bayesian
interpretations using standardized “reference” or “automatic”
priors.

• It is quite common, even amongst statisticians who consider
themselves frequentists, to use Bayesian methods when they
are more convenient (often the case) or provide capabilities
unavailable to frequentist methods (also often the case, e.g.,
when incorporating prior information).
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Practical Application

• Considerable progress has been made in the past decade in
solving the computational difficulties, particularly with the
development of Markov Chain Monte Carlo (MCMC)
methods for simulating a random sample (draw) from the full
posterior distribution, from which marginal distributions and
summary means and variances (as well as other averages) can
conveniently be calculated.

• These methods have their origin in physics. The Metropolis-
Hastings and Gibbs sampler methods are two popular schemes
that originated in early attempts to solve large physics
problems by Monte Carlo methods.
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Practical Application: Markov Chains

• Start from an arbitrary point in the space of models and
parameters. Following a specific set of rules, which depend
only on the unnormalized posterior distribution, generate a
random walk in this space, such that the distribution of the
generated points converges to a distribution drawn from the
underlying probability distribution.

• The random walk is a Markov Chain: That is, each step
depends only upon the immediately previous step, and not on
any of the earlier steps.

• Many rules for generating the transition from one state to the
next are possible. All converge to the same distribution. One
attempts to choose a rule that will give efficient sampling with
a reasonable expenditure of effort and time.
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Gibbs Sampler

• The Gibbs Sampler is a scheme for generating a sample from
the full posterior distribution by sampling in succession from
the conditional distributions. Thus, let the parameter vector θ
be decomposed into a set of subvectors θ1, θ2, …, θn. Suppose
it is possible to write the conditional distributions

p(θ1| θ2, θ3,…, θn),

p(θ2| θ1, θ3,…, θn),

…

p(θn| θ1, θ2,…, θn-1).
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Gibbs Sampler (2)

• Starting from an arbitrary initial vector
θ(0) =(θ1

(0), θ2
(0), …, θn

(0)),
generate in succession vectors θ(1), θ(2),… by sampling in
succession from the conditional distributions:

p(θ1
(k)| θ2

(k-1) , θ3
(k-1),…, θn

(k-1)),

p(θ2
(k)| θ1

(k), θ3
(k-1),…, θn

(k-1)),

…

p(θn
(k)| θ1

(k), θ2
(k),…, θn-1

(k) ), with
 θ(k) =(θ1

(k), θ2
(k), …, θn

(k)).

• In the limit, the sample thus generated will converge to a
sample drawn from the full posterior distribution.
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Gibbs Sampler (Example)

• Suppose we have normally distributed estimates yi, i=1,…,N,
of a parameter x, with unknown variance σ. The likelihood is

p(y|x,σ)~ σ -Nexp(- Σ(yi-x)2/2σ2)

• Assume a flat (uniform) prior for x and a “Jeffreys” prior 1/σ
for σ. The posterior is proportional to prior times likelihood:

p(x,σ|y)~ σ -(N+1)exp(- Σ(yi-x)2/2σ2)

• The conditional distributions are, for x, a normal distribution
with mean equal to the average of the y’s and variance equal to
σ2 (which is known at each Gibbs step), and σ2 proportional to
a sample from an inverse chi-square distribution with N-1
degrees of freedom (divide Σ(yi-x)2 by a sample from a
standard chi-square distribution). Again note that when
sampling for σ2, x will be known at each Gibbs step.
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Metropolis-Hastings Step

• The example is simple because the conditional distributions
are all standard distributions from which samples can easily be
drawn. This is not usually the case, and we would have to
replace Gibbs steps with another scheme.

• A Metropolis-Hastings step involves producing a sample from
a suitable proposal distribution q(θ*|θ), where θ is the value at
the previous step. Then a calculation is done to see whether to
accept the new θ* as the new step, or to keep the old θ as the
new step. If we retain the old value, the sampler does not
“move” the parameter θ at this step. If we accept the new
value, it will move.

• We choose q so that it is easy to generate random samples
from it, and with other characteristics.
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Metropolis-Hastings Step (2)

• Specifically, if p(θ) is the target distribution from which we
wish to sample, first generate θ* from q(θ*|θ).

•  Then calculate

α=min{1,(p(θ*) q(θ|θ*))/(p(θ) q(θ*|θ))}

• Then generate a random number r uniform on [0,1]
• Accept the proposed θ* if r≤α, otherwise keep θ.

• Note that if p(θ*)= q(θ*|θ) for all θ, θ*, then we will always
accept the new value. In this case the Metropolis-Hastings step
becomes an ordinary Gibbs step.

• Generally, although the Metropolis-Hastings steps are
guaranteed to produce a Markov chain with the right limiting
distribution, one gets better performance the closer we can
approximate p(θ*) by q(θ*|θ).
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Mathematical Model of Cepheid Problem

• We model the radial velocity and V-magnitudes as Fourier
polynomials of unknown order K, where ϑ  is the phase. Thus,
for the velocities:

• A major problem is to choose the optimal number of
coefficients in the Fourier polynomial.

v v v

v

v

v a j b j

r r r

r

r

r j
j

K

j

= +

= +
=
∑

∆

∆

 where

 is the observed radial velocity

 is the mean radial velocity and

 ( cos sin )ϑ ϑ
1
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Mathematical Model

• The ∆ –radius of the star is the integral of the ∆− radial
velocity:

• The relationship between the radius and the photometry is
given by

∆r f a j b j

f

j j j
j

K

j= − −
=
∑ ( sin cos ) /ϑ ϑ

1

where  is a positive numerical factor.

V C A B V R r s

V R

A B C

s

= − + − − +10 0 5 10 0

0

( ( ( ) . log ( / )))φ

φ

∆
where the  and  magnitudes are corrected for

reddening,  ,   and  are known constants,

 is the angular diameter of the star and  is the 

distance to the star
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The Traditional Approach

• Observe velocity curve, smooth by eye or Fourier series,
integrate to obtain radial displacement, do a least squares fit by
predicting                   from observed flux and color.

• This approach is statistically inadequate.

• Fitting of velocities is ad hoc. If eyeball, how well fit? If
Fourier series, how many terms to take? We have a model
selection/averaging  problem.

• There is error in the independent variable
and color index: This is an errors-in-variables  problem.

• Therefore, the solution for s  may be biased, and its error
will be underestimated. A simultaneous errors-in-variables
solution of velocity and photometry data would be
preferable.

∆ ∆r f v dr= − ∫ ϑ

φ0 + ∆r s/
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Application to Cepheid Variables

• We have applied a Bayesian analysis to the calculation of
Cepheid distances and radii using the surface brightness
(Baade-Wesselink) method. Our model correctly treats the
errors-in-variables aspect of our data (both x and y data appear
with errors), and includes full model averaging with respect to
the empirical Fourier series used to represent the velocity and
photometry data.

• Based on a representative sample of eight stars, our new
analyses support the distance scale of Gieren, Barnes, &
Moffett (1993, ApJ, 418, 135) and do not show bias in the
calculation of those distances suggested by Laney & Stobie
(1995, MNRAS, 274, 337). Tom Barnes will discuss this aspect
of our work.
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Sample Run
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Significant Issues on Priors

• The priors on the Fourier coefficients must be chosen
carefully. If too vague, significant terms may be rejected. If
too sharp, overfitting may result. For our models we have used
a Zellner G-prior, which is equivalent to a Maximum Entropy
prior, of the form

where a is the vector of Fourier coefficients, X is the design
matrix of sines and cosines for the problem, and σ is an
arbitrary parameter which gets its own prior distribution
(technical details beyond the scope of this discussion).

p a a X Xa( ) exp( / ),∝ − ′ ′ 2 2σ
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Significant Issues on Priors

• Cepheids are part of the disk population of the galaxy, and for
low galactic latitudes are more numerous at larger distances s.
So distances calculated by MLE or with a flat prior will be
affected by Lutz-Kelker bias, which can amount to several
percent.

• The classical way to understand the Lutz-Kelker bias is that
since the density of stars increases with distance, it is more
likely that we have a star a bit farther away with a negative
error that brings it to the observed distance than that we have a
closer star with a positive error that pushes it further out to the
observed distance.
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Significant Issues on Priors

• The Bayesian approach is simply to recognize that our prior
distribution on the distance of stars depends on the distance
(for a uniform distribution it would be proportional to s2ds).

• In our problem we choose a spatial distribution of stars that is
exponentially stratified as we go away from the galactic plane.
We adopted a scale height of 97±7 parsecs, and sampled the
scale height as well. Our prior on the distance looks like

          

where  is the spatial density of stars. 

For an exponential distribution we have

          ( ) ~ (- | | /

where  is the scale height,   and  is the 

latitude of the star.
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Other Fully Bayesian Approaches

• Since going to Duke on sabbatical, I and my Duke
collaborators have been studying other approaches to this
problem. These are all still “in work”.

• We are looking at other functional forms to represent the
velocity and photometry data. In particular, the velocity
curve suffers a steep drop-off near ϑ =1; a more local
representation using wavelets looks very promising.

• We are investigating other priors on the coefficients that
have been used successfully in other contexts. One
promising approach is the “Expected Posterior Prior”
developed by Jim Berger with one of his students.
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Discussion of Results

• Use of our rigorous mathematical method does not change the
distances, radii, mean velocities, or optimal phase shifts
compared to the simple method used in Gieren et al. 1993,
ApJ, 418, 135.

• Our method effectively and objectively selects and averages
over models with the optimal number of terms in the Fourier
series for the velocities and photometry. Each model
contributes appropriatedly to the final result.

• The Bayesian method suggests natural ways to account for
statistical effects such as the Lutz-Kelker effect by regarding
them as resulting from incorrect choices of the prior.
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Discussion of Results

• Bayesian methods show extraordinary promise for obtaining
solutions of complex statistical problems in astronomy. They
are likely to become an important tool in the astronomical
toolbox.
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Beowulf

• Note that Beowulf would be an ideal platform for doing
MCMC calculations, as it could run a number of independent
Markov chains. This would greatly speed up the calculations
as well as improving the statistics of the sampling.


