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SUMMARY

In a least squares adjustment when more than one variable in
an equation of condition has error, the results will be
affected by unnecessary asymptotic bias unless the algorithm
is properly formulated. Similar difficulties can be expected
with robust estimation techniques that are based on extending
least squares to a noneuclidean metric. This paper presents
an algorithm for robust estimation in the case that each
equation of condition contains several observations. The
properties of the estimates produced by the algorithm are
investigated, and a numerical example using real data on
galaxies is given.
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1. I NTRODUCTION

As Lybanon (1984) has pointed out, it is not widely
appreciated outside of the statistical community that a
special treatment of the least squares problem is required
when there is more than one observation having error per
equation of condition. Failure to formulate the problem
correctly will result in an asymptotically biased estimator,
even when fitting a straight line. Earlier work (Madansky,
1959; Celmins, 1973, 1984; Britt & Leucke, 1973; Golub & van
Loan, 1980; Jefferys, 1980, 1981; see also Kendall & Stuart,
1979, §29, and references therein) has established a very
general algorithm for performing least squares adjustments
under a number of conditions: more than one observation per
equation of condition, correlated observations, nonlinear
equations of condition, and exact constraints among
parameters. Since robust estimators of the type discussed by
Huber (1981) can be thought of as generalizations of least
squares to a noneuclidean metric, it is to be expected that
they too will be subject to unnecessary asymptotic bias when
applied to this case. In this paper I extend the results of
Britt & Leucke, Celmins, and Jefferys to the robust
estimation case.

2. F ORMULATION OF THE PROBLEM

Usually the equations of condition for an estimation problem
are written explicitly, with each equation having been solved
for the “dependent variable,” that is, the observation, on
the left hand side as a function of “independent variables,”
that is, parameters, on the right. Thus, for example, Huber
(1981) writes for the nonlinear regression case

 y i  = f i ( ϑ), i = 1,..., p (1)

where the y i  are the observations, ϑ=( ϑ1, ϑ2,..., ϑm) is the

vector of the parameters, and the f i  are a set of p

independent functions connecting the parameters with the
observations.

If some of the equations of condition contain more than one
observation, it is not possible to write them in the form of
Eqs. (1). A simple example is a straight line fit where both
x and y have error:

 y i  = α+βxi , i = 1,..., p. (2)



Given such an equation of condition, we cannot solve
uniquely for the observations in terms of parameters only.
The best we can do is to bring everything over to the left-
hand side and express the equation of condition implicitly:

 y i –α–βxi  = 0, i = 1,..., p. (3)

It would be wrong to solve Eqs. (3) by minimizing

∑
i=1

p

(y i –α–βxi )
2

(4)

with respect to α and β, since this will result in an
asymptotically biased estimator (in particular, the slope of
the line will be underestimated). To treat this case, we
introduce a new set of variables y p+1, y p+2,..., y 2p by the

definition

 y p+i  = x i , i=1,...,p (5)

and rewrite Eqs. (3) as

 y i –α–βyp+i  = 0, i = 1,...,p. (6)

We can simplify the notation even more by renaming the
parameters. Using a superscript T to denote transpose, we set

a
T

=( α, β)=(a 1,a 2). We can then write Eqs. (6) in the form

 f i (y,a) = y i –a1–a2yp+i  = 0, i=1,...,p, (7)

where we have collected the n=2p observations into a vector

y
T

=(y 1,y 2,...,y n). Finally we can collect the individual

equations of condition f i  into a vector f T=(f 1,f 2,...,f p)  of

equations of condition and write

 f(y,a)=0. (8)

Equations (8) are a general and convenient vector notation
that can be extended to express the equations of condition
for a wide class of estimation problems, both linear and
nonlinear. In what follows, we shall assume that the



equations of condition for the problem have been put into
this form.

The next step is to identify the observation errors
explicitly. Let us write

 y = Y–v, (9)

where the Y are the actual observations and v
T

=(v 1,v 2,...,v n)

is the error vector, and substitute Eq. (9) explicitly into
Eq. (8) obtaining f(y,a)= f(Y–v,a). We will also introduce a
loss function S(v), and our object will be to find a relative
minimum of the loss function S subject to the constraints
that the equations of condition (8) are satisfied. We require
that S(v) vanish quadratically at the origin with a
nonsingular, positive definite, diagonal Hessian matrix. The
restriction to a diagonal Hessian is not neccessary and we
discuss later how the method may be generalized to the
nondiagonal case.

As an example, let us introduce one of the standard robust
metric functions ρ(u). Then some possible loss functions for
the robustified linear problem posed by Eqs. (7) (not the
only, nor necessarily even the best ones) might be

S(v) = ∑
i=1

p

[ ρ(v i /s)+ ρ(v p+i /s) ] , and (10a)

S(v) = ∑
i=1

p

ρ( √v
2
i +v

2
p+i /s ), (10b)

where s is a scale factor that has to be estimated. The
scales of the x and y variates can without loss of generality
be assumed equal, since if they are unequal, but related by a
constant, known factor κ, then rescaling the x data will make
them equal. See Brown (1982) for further discussion of this
point, and also Section 5 of this paper. For the linear
errors-in-variables model, the first of these formulas
corresponds to the choice advocated by Brown (1982); the
second minimizes the robustified perpendicular distance
between the data point and the fitted line, and has been
advocated for the linear errors-in-variables model by Zamar
(1985, 1987), who calls it the orthogonal regression M-
estimator model. Both reduce to the ordinary least squares
errors-in-variables model when the metric is Euclidean . In
more complicated problems, for example when the data points



involve more than two quantities measured with error, each of
Eqs. (10) has an obvious generalization (see, e.g., Zamar
1985, 1987).

To solve the minimization problem, we follow Deming (1938)
and Brown (1952) in recognizing that the residual vector v as
well as the vector a of explanatory parameters are both free
variables. In the statistical literature the v are known as
incidental parameters. Since this is a problem in constrained
minima, we introduce a p-vector λ of Lagrange multipliers and
then find an extremum, relative to v and a, of

~
S(v,a, λ) = S(v)– λ

T
f(Y–v,a). (11)

Taking the variation, this means solving the equation

d
~
S = 

∂S

∂v
dv + λ

T

 


 
∂f

∂y
dv–

∂f

∂a
da  = 0 (12)

simultaneously with Eqs. (8). Since the variations dv and da
are arbitrary, it follows that the coefficients of the
infinitesimal variations dv i  and da i  in Eqs. (12) must each

vanish separately. Using subscripts for brevity to denote the
required matrices of partial derivatives

f y = 
∂f(y,a)

∂y
 ,   S v = 

∂S

∂v
, ...

we arrive at the conditions

Sv+λ
T

f y = 0, (13a)

λ
T

f a = 0. (13b)

Since Eqs. (8) and (13) are in general nonlinear, it is
necessary to solve them by a method of successive
approximations. To accomplish this let us first rewrite Eqs.

(8), assuming that we want to find an improved solution

(ŷ new,â new)=(y,a) close to a preliminary solution (y ^ ,â ).

Using hats to indicate evaluation on (y ^ ,â ), and expanding in
small quantities we find



 f(y,a) =f(Y–v ^–(v–v^),a^+δ^)

= f(Y–v ^,â )–f
^

y(v–v^)+f
^

aδ^ (14)

= 0,

where δ^  is the required correction to the parameter vector.
In Eq. (14) the partial derivative matrices are evaluated, as

indicated, on (y ^ ,â ), which is the current best estimate of
the solution. Quadratic terms have been neglected, but they
vanish anyway when we converge on the solution. Finally let
us define

f
^

 = f(Y–v ^,â ), (15a)

ϕ̂ = f
^

+f
^

yv̂, (15b)

so that Eqs. (13-14) become (after evaluating the derivative
matrices on the estimated vectors)

ϕ̂–f
^

yv+f
^

aδ^  = 0. (16a)

Sv+λ
T

f
^

y = 0, (16b)

λ
T

f
^

a = 0. (16c)

Several methods are available to solve Eqs. (16), which are
analogs of the methods found in the literature on robust
estimation. One is Newton’s method; another is to generalize
the method of iteratively reweighted least squares to this
case. We shall discuss each of these two methods in turn. I
have also developed a third iterative scheme to solve Eqs.
(16) that is similar to the approach described by Huber
(1975), but it does not appear to have any advantages in this
case, and so I have not described it here.

3. S OLUTION USING ITERATIVELY REWEIGHTED LEAST SQUARES

Define a diagonal matrix D by

 v
T

D(v) = S v(v), (17)

which exists for all v since S vanishes quadratically at 0.
Then Eq. (16b) can be written

 v
T

D = – λ
T

f
^

y, (18)



so that

 v
T

 = – λ
T

f
^

yD
–1

. (19)

At this point we note that for some metrics (for instance,
hard redescenders like Tukey’s biweight) D is formally
singular for those observations that are larger than the
cutoff implied by the “tuning constant.” In such a case we
alter D by replacing the zeros on the main diagonal by a
small ε. Then at the very end we can take the limit as ε→0.
It turns out that this prescription gives us a well-defined
solution, which is equivalent to dropping from the solution
those equations of condition that give rise to zeros on the
main diagonal of D.

Substitute Eq. (19) into Eq. (16a) to obtain

ϕ̂+f
^

yD
–1

f
^

y
T

λ+f
^

aδ^  = 0 (20)

Eq. (20) is solved for λ to give

λ = – W( ϕ̂+f
^

aδ^), (21)

where

 W = (f
^

yD
–1

f
^

y
T

)
–1

(22)

is a “weight matrix.” The terms of order 1/ ε in Eq. (19) give

rise to terms of order ε in Eq. (22) and vanish when the limit

ε→0 is taken. This intuitively corresponds to the zero
weighting that hard redescenders apply to equations of
condition that involve residuals greater than the cutoff.

Substituting Eq. (21) into Eq. (16c), we arrive finally at
the “normal equations”

(f
^T

aWf
^

a) δ^  = – f
^T

aWϕ̂. (23)

Finally, substituting Eq. (21) into Eq. (19), and dropping

the term in δ^  (which goes to zero anyway as the process is
iterated) we obtain

v̂new = v = D
–1

f
^T

yWϕ̂. (24)



In Eq. (24), the terms in ε cancel those in 1/ ε, giving a
finite result.

We now have all the equations we need for an iteration

procedure. Given an approximate solution (y ^ ,â ) (we start with

ŷ=Y, v^=0 unless a better value is known a priori), we plug

into Eq. (15b) to obtain ϕ̂. This is inserted into Eqs. (23)

and (24) to obtain an updated v ^  and a δ^ . Then the vector a ^  is

updated using a ^
new = a = a ^+δ^ . At the same time we update y ^

using y ^
new = Y–v ^

new Note that v ^
new is subtracted from the

observation vector, not from the previous best-estimate

vector y ^ . At this point the first iteration is complete, and
subsequent iterations proceed in the same way until the
process converges. In my software, convergence is assumed

when the changes in a ^  and y ^  from one iteration to the next
are smaller than a preset amount.

In solving Eqs. (16) as we have done, it is important that
the matrices and vectors be evaluated using the most recently

updated values of y ^  and a ^ . Otherwise, an unnecessary source
of bias will be introduced.

4. S OLUTION USING NEWTON’ S METHOD

The solution using Newton’s method is less useful because it
requires second derivatives of the metric function ρ( u),
which vanish with large u for many useful metrics. Unlike the
iteratively reweighted least squares method, there does not
appear to be a simple “limiting case” that can be applied to
sidestep the singularities that arise as a result. Even for
metrics that do not have a vanishing second derivative,
numerical experience shows that Newton’s method sometimes
diverges when iteratively reweighted least squares converges.
On the other hand, it sometimes converges more rapidly than
iteratively reweighted least squares. Therefore it may be
useful despite its limitations, and the equations are derived
below.

Let H be the Hessian matrix of S(v):

 H ij  = 
∂
2

S

∂vi ∂vj
(25)



Then setting v = v ^  + ∆v̂ , we can rewrite Eq. (16b) in the
form

 S
^T

v + H
^∆v̂  + f

^T
yλ = 0, (26)

where as usual the hats mean evaluation on hatted variables,
so that

∆v̂  = – H
^–1

(f
^T

yλ+S
^T

v). (27)

Also, Eq. (16a) becomes

 f
^

–f
^

y∆v̂+f
^

aδ^  = 0. (28)

Inserting Eq. (27) into Eq. (28), after some manipulation
there results

λ = –W n( ϕ̂N+f
^

aδ^), (29)

where the “weight matrix” W n is now

 Wn = (f
^

yH
^–1

f
^T

y)
–1

(30)

and the right hand side vector ϕ̂n is given by

 ϕ̂n = f
^

+f
^

yH
^–1

S
^T

v. (31)

Finally, this is inserted into Eq. (16c), giving the
“normal equations”

(f
^T

aWnf
^

a) δ^  = –f
^T

aWnϕ̂n, (32)

Finally, combining Eqs. (27) and (29), and dropping the

term in δ^  which goes to zero upon iteration, we obtain a

formula for ∆v̂ :

∆v̂  = H
^–1

f
^T

yWNϕ̂n. (33)

It is easily seen that Eqs. (31-33) bear a very strong
resemblance to Eqs. (15b), (23) and (24), respectively. They



can be set up and solved by appropriate modifications of the
same software.

The iteration procedure for Newton’s method now proceeds as

follows: Starting at an approximate solution (y ^ ,â ), we use

Eq. (31) to determine ϕ̂n. Eq. (33) gives us ∆v̂ , and Eq. (32)

gives us δ^ . Finally as before we set a ^
new = a = a ^+δ^ , and (in

a change from the iteratively reweighted least squares

method) v ^
new = v = v ^+∆v̂ , y ^

new = y = y ^–∆v̂ . The iteration now

complete, we repeat until convergence.

A comparison of Eqs. (30), (31) and (33) shows that this
method has difficulties when the second derivative of the
metric function vanishes. In this case, one of the terms in

Eq. (33) is O(H
^–1

), and since some eigenvalues of H
^

 will
vanish if the second derivative of the metric function
vanishes, the method will fail. It is true that for large u
the vanishing of ρ"(u) is equivalent to saying that the
residual u has no influence on the solution; and it may be
that simply excluding such observations from the solution
will overcome this difficulty. However, this hypothesis has
not been tested.

5. C ONSISTENCY AND THE CHOICE OF LOSS FUNCTION

The choice of the loss function S(v) is an important one. As
a general principle one would want to demand that the loss
function go over to the standard one for the errors-in-
variables model when the metric function is Euclidean. Two
possible choices that satisfy this criterion are given by
Eqs. (10a-b). The first of these choices has been advocated
by Brown (1982), but in a correction to his original paper he
reported a counterexample to his consistency proof (Brown
1983). However, the counterexample he gave in fact only
demonstrates a flaw in his consistency proof. Ironically, if
Brown’s method is used on the counterexample, it nevertheless
estimates the slope of the line consistently, a point that
Brown appears to have missed. This turns out to be due to the
special case that Brown considered—namely, fitting a line
with unit slope and equal variances in the two coordinates.
It turns out that Brown’s estimator is indeed inconsistent
for an arbitrary slope (Wang, 1988). This is certainly a
point against the use of this estimator.

Zamar (1985, 1987) has reported that the convergence
properties of Brown’s estimator are not good, although I have
had no difficulty with it. Zamar advocates the choice of Eq.
(10b), which he has shown to be a consistent estimator in the



linear errors-in-variables case when fitting a hyperplane in
n-dimensional space under suitable conditions. In particular,
Zamar assumes that the error distribution is spherically
symmetric. Zamar says that this method has better convergence
properties than does a method based on Eq. (10a).

It is interesting to notice that although both Eq. (10a)
and Eq. (10b) go over to the standard least squares errors-
in-variables model when the metric function ρ( u) becomes
Euclidean, they have very different properties when the
metric is far from Euclidean. As an extreme example, consider
the case when the metric function is the L 1 metric generated

by ρ(u)=|u|. In this case, for a point lying away from the
fitted line, Eq. (10a) possesses infinitely many solutions
for the position of the fitted point when the slope is equal
to 1 (Figure 1), and very different solutions for slopes that
differ only slightly from this value, depending on whether
the slope is less than 1 (Figure 2) or greater than 1 (Figure
3). On the other hand, Eq. (10b) always gives a unique
solution for the fitted point that varies continuously with
the slope (Figure 4), as does the least squares solution. In
some sense, therefore, Eq. (10b) is closer to least squares
than is Eq. (10a).

Another aspect of Eq. (10b) that makes it superior to Eq.
(10a) is the fact that the metric of Eq. (10b) is invariant
under a larger group of coordinate transformations than is
that of Eq. (10a). Specifically, Eq. (10b) is invariant to
rotations, whereas Eq. (10a) is not. This means that Eq.
(10b) has a geometrically invariant meaning that is not
shared by Eq. (10a).

If we adopt the principle that we should choose that metric
that maintains as closely as possible the properties of the
least squares metric, while still possessing the desired
robust characteristics, then it would appear that grouping
the data by observation point and measuring the error as a
function of the orthogonal distance of the measured point to
the fitted curve, as in Eq. (10b), is superior to treating
each observed datum separately, as in Eq. (10a). The odd
behavior of Eq. (10a) illustrated in Figures 1-3 may be
related to the difficulties that have been reported as to its
convergence properties, and the geometric invariance of Eq.
(10a) under the rotation group is a decided advantage, since
physically we would want our answers to be independent of the
choice of coordinate system.

These remarks define the behavior of robust estimators in
the errors-in-variables model when the surface being fitted
is a hyperplane, but they do not address the problem of
fitting a more general nonlinear function. Unfortunately, it
is clear that in the latter case estimators of the type



discussed in this paper cannot be consistent in general. This
is true even if the metric function is Euclidean and the
distribution of the errors is normal. This is easily be seen
from a counterexample, and the counterexample can give us an
idea of the asymptotic bias of the ordinary orthogonal
regression least squares model in this case. This in turn can
warn us when this method cannot be applied safely.

Let ( ξ, η) be a set of measurements of points on a circle,
the position of whose center is known. The “true” position of

each point is (X,Y), and the errors ξ–X, η–Y are N(0, σ
2

). An
astronomical example of how such data might arise involves
measurements of the relative positions of two members of a
binary star system (assumed in a circular orbit with a face-
on orientation). If no information were given to fix the time
of each observation, we would still be able to estimate the
radius of the orbit from these data. If R 0 is the “true”

radius of the circle, then we will see that the estimated
radius b n → b > R 0 in probability, and therefore the

orthogonal regression least squares estimator of the radius
of the circle is inconsistent.

Figure 5 shows the geometry of the problem. ρ is the

distance from the observed point ( ξ, η) to the “true” point

(X,Y), and ϑ is the angle between the line from the center of
the circle to the “true” point and the line from the “true”
point to the observed point. The distance from the center of
the circle to the “true” point is therefore r, where

 r = R 0√1+α
2

–2α cos ϑ  = r( ρ, ϑ) (34)

independently of ( X, Y), and

α = ρ/R 0 . (35)

The radius estimated from the orthogonal regression least
squares model will converge in probability to the value of b

that minimizes E(b–r( ρ, ϑ))
2

 (Wald 1949, Huber 1967). Since
the expectation is a smooth function of b, the condition for
a minimum is just

0 = 
∂
∂b E(b–r( ρ, ϑ))

2
 = 2 E(b–r) , (36)

or



 b = E(r) . (37)

Now if the errors in the ( ξ, η) are normally distributed we
can write:

E(r) = 
1

2πσ
2  ⌡


⌠

0

∞

dρ ρ exp

 



 



–
ρ

2

2σ
2  ⌡


⌠

0

2π

dϑ  r( ρ, ϑ)

    = 
1

2π ⌡

⌠

0

∞

du e
–u

 ⌡

⌠

0

2π

dϑ  r( ρ, ϑ) (38)

    = 
1

2π ⌡

⌠

0

∞

du e
–u

 ⌡

⌠

0

π

dϑ  [ r( ρ, ϑ)+r( ρ, ϑ+π) ] .

It is readily verified that for ρ>0 the integrand of the
inner integral on the last line of Eqs. (38) satisfies

 r( ρ, ϑ)+r( ρ, ϑ+π) ≥ 2R 0 , (39)

with equality possible only for ϑ=0, π. Since the inequality
is strict on all but a zero measure subset of the integrand’s
support, it follows that for ρ>0 we have:

1

2π ⌡

⌠

0

2π

dϑ r( ρ, ϑ) > R 0, (40)

from which it follows immediately that whenever σ >0 we also
have

 b = E( r) > R 0 . (41)

To gauge the degree to which the estimator fails to be
consistent, we can obtain an asymptotic expression by
assuming that α<<1, and expanding the radical in Eq. (34) in

powers of α, retaining terms through the second order. (This

expansion fails for large α, i.e., large ρ, but the



exponential dominates in this region and therefore the
contribution to the integral from this region is
asymptotically negligible.) Inserting this expression into
Eq. (38), we can evaluate the resulting expression explicitly
and finally arrive at

 b ≈ R 0 (1+
1
2( σ/R 0)

2
) . (42)

This expression shows that the amount by which the
orthogonal regression least squares estimator fails to be
consistent in this case is quadratically small in the ratio
( σ/R 0). Even moderately large scatter (say of the order of

10% of the radius of curvature R 0) may contribute only a

negligible amount (in this case less than 1%) to the
asymptotic bias of the estimator. Of course, it would be
better if the estimator were consistent, but there does not
seem to be a simple way to accomplish this in general. The
bias correction is evidently a function of the actual
distribution of the data, and if we replace the orthogonal
regression least squares estimator by the corresponding
orthogonal regression M-estimator estimator, it may also
depend on the choice of metric function. It will depend in a
complicated way on both of these, and since the true
distribution is usually unknown, a general formula for the
asymptotic bias would appear to be unattainable.
Nevertheless, Eq. (42) provides a practical method for
estimating the size of the bias, and hence of warning the
user when the use of this method is likely to lead to
trouble. This remark applies to both the robust and nonrobust
case.

One approach to reducing the bias of these estimators may
be to use methods of Fuller (1987; §3.2.4). Fuller suggests
bias-correction terms that can be added to the equations of
condition in the orthogonal regression least squares case.
These terms depend on the second derivatives of the equations
of condition, and so are messy to evaluate. However, it may
be that the methods Fuller advocates can be adapted to the
robust nonlinear orthogonal regression M-estimator estimation
problem. This will be the subject of further research.

Another way to look at the asymptotic bias of the
orthogonal regression least squares estimator when the
function being fitted is nonlinear is to perform a suitable
coordinate transformation that “straightens out” the fitted
curve in the neighborhood of the data points. In the circle
example this can only be done locally of course, but if we
introduce a suitable coordinate patch about the point (X,Y),
we find that the error distribution in these “straightened
out” coordinates is not spherically symmetric with regard to
the natural Euclidean metric of the patch coordinates. Since



the ordinary orthogonal regression least squares estimator is
asymptotically biased when fitting a straight line if the
error distribution of the data is not spherically symmetric
(Zamar, 1985) it is not surprising that the nonlinear example
suffers similarly. In his paper Zamar presented numerical
results demonstrating that for linear fits in the presence of
asymmetric noise, the robustified orthogonal regression M-
estimator estimator can dramatically reduce the asymptotic
bias as compared to the corresponding orthogonal regression
least squares estimator. Thus there is reason to believe that
the same might be true for robustified nonlinear fits using
the method of this paper. This will be the subject of future
research.

6. S CALE DETERMINATION

Thus far in the discussion I have ignored the problem of
scale determination. Now it is time to remedy this
deficiency. The literature on robust estimation has many
examples of robust scale estimators, and in my software the
scale s has been estimated by solving the equation

1
(p–k)I  S(v) ≡ 1 (43)

implicitly for s, which appears in the sum S(v) through Eqs.
(10). In the software, the solution for s is made
simultaneously with the other parameters. In Eq. (43), the
factor I is a normalizing factor that depends on the desired
asymptotic relative efficiency (ARE) and the particular
metric function used. p is the number of equations of
condition, i.e., the dimension of f, and k is the number of
explanatory parameters, i.e., the dimension of a. Rey (1983)
presents a selection of metrics and normalizing factors. This
choice of s is not the only useful one. For example, Brown
(1982) advocates using the median absolute deviation, whereas
Huber (1975) discusses still other strategies.

7. C ORRELATED OBSERVATIONS

The discussion so far has assumed that the observations y are
uncorrelated and of unit weight so that the errors v satisfy

<vv
T

>=I, where I is the identity matrix, corresponding to the
Hessian matrix of S(v) being a multiple of the unit matrix at
v=0. This is in general not the situation, and so it is
useful to consider the case of correlated observations, which
includes unequal weights as a special case. To accomplish
this, let us express our problem in terms of a correlated set
of variables x=Qy so that the covariance matrix of the y’s is

I and the covariance matrix of the x’s is σ=QQ
T

. Similarly,



we write for the correlated residuals u=Qv. Thus, if we

assume a covariance matrix σ to be given a priori, then Q can

be chosen to be any square root of σ. As σ is normally

block-diagonal with only small matrices along its diagonal,
its square root is easily obtained by any one of a number of
methods, e.g., Cholesky decomposition of the blocks. If the

observations are unequally weighted but uncorrelated, then σ
is diagonal and Q can be chosen diagonal.

Since the new variables x are presumably closer to the
actual problem than the normalized variables y, it is to be
expected that the equations of condition will be expressed

directly in terms of them, e.g., g(x,a)=f(y,a)=f(Q
–1

x,a). All
that remains is to reexpress the problem explicitly in terms
of g, x, and u, using Q to transform between the old and new
variables. For the iteratively reweighted least squares
solution, this results in the following equations:

f
^

y = g
^

xQ (44a)

W = (g
^

xQD
–1

Q
T

g
^T

x)
–1

(44b)

ϕ̂ = g
^

+g
^

xû (44c)

û = QD
–1

Q
T

g
^T

xWϕ̂ (44d)

(g
^T

aWg
^

a) δ^  = –g
^T

aWϕ̂ (44e)

The solution by Newton’s method is left as an exercise for
the reader.

8. S OLUTION BY ORTHOGONAL TRANSFORMATIONS

Although I have solved the minimization problem in a manner
that mimics the use of normal equations in least squares
problems, it is very easy to adapt the equations for solution
using orthogonal transformations (Golub 1965; Golub & Reinsch
1970; Lawson & Hanson 1974) which may be advantageous because
of the greater numerical stability of this method and its
ability to overcome problems due to poor observability of
parameters. The principle is very simple. Only Eq. (44e) or
its equivalent has to be changed. First find a square root U
of W:

 W = U
T

U (45)



The matrix U has to be computed from W, but this is not
difficult because in typical problems W is strongly block-
diagonal and the square root operation only has to be
performed on the individual blocks. In the practical problems
I have solved where at most 4 observations appear in no more
than 2 simultaneous equations of condition, the largest
matrix whose square root is required has been of order 2.

Once we have U, it remains to set up the orthogonal
decomposition problem that is equivalent to the least squares
problem of Eq. (44e). That problem can be written

||Ug
^

aδ^+Uϕ̂|| = min. (46)

where the vector δ^  is the adjustable parameter. Except for
replacing Eq. (44e) by the equivalent problem posed in Eq.
(46), the iterative procedure remains unchanged. Thus, one
bases the solution on a QR decomposition or a singular value

decomposition of the matrix Ug
^

a.

9. E XACT CONSTRAINTS

In practical applications it frequently happens that the
problem involves exact constraints among the parameters. This
may come about because of physical considerations, or it may
happen because the problem is most conveniently set up by
using redundant parameters and then constraining them
appropriately. In either case, it is useful to formulate the
problem so as to handle this case.

Let the constraints be expressed as

 h j (a 1,a 2,...) = 0, j=1,2, ...,r (47)

or equivalently as

 h(a) = 0. (48)

Then we introduce an additional set of Lagrange multipliers
in the form of an r-vector µ, which after linearization
results in the equations

(g
^T

aWg
^

a) δ^+h
^T

aµ = –g
^T

aWϕ̂ (49a)

 h
^

aδ^  = –h
^

 . (49b)



which replace the normal equations (44e) and are solved for µ

and δ^  simultanously.

Similarly, exact constraints can also be handled easily
when orthogonal decomposition is used to solve the “least
squares” problem. As in the unconstrained case, the basic
strategy is to reduce the unconstrained problem to a problem
that looks like a problem in ordinary least squares, and then
recast it in terms of orthogonal decompositions. Then the
constraints are added to the problem. There are a number of
approaches to adding the constraints, and the reader is
referred to Lawson & Hanson (1974) for details.

Finally, note that when there are constraints, the number
of degrees of freedom in the denominator of Eq. (43) is
changed. In this case, the denominator should be written (p–
m+r)I.

10. A N UMERICAL EXAMPLE

Instead of generating artificial data for the numerical
example, I have chosen to present a problem with real data
from the astronomical literature. Real data often have
characteristics that are not well mimicked by artificial
data. The data presented in Table 1 are from Dressler (1984).
They consist of the integrated V magnitudes (V 26) and log of

the central velocity dispersion (log σ) of a sample of 53
galaxies from two galaxy clusters, the Coma and Virgo
clusters. According the the Faber-Jackson relation (Faber &
Jackson, 1976), the relation between these two quantities is
roughly linear, having the form

log σ = a+bV 26, (50)

where the parameter a depends on the distance to the cluster
and b is a constant. Since there are two clusters, there are
two distances and therefore two independent values of a.
These data are presented graphically in Figure 6. In that
figure the separation between the two clusters is clearly
evident. Dressler identified four obvious outliers, two from
each cluster, which are noted in the figure by their catalog
numbers. From their position at the bottom of the figure, it
is tempting to surmise that the outliers are actually a
consequence of a physical deviation from the linear Faber-
Jackson relation at the lower (fainter) end, but we have no
theory to guide us on this point. Whatever the reason for the
deviations of these points away from the general trend, they
are outliers insofar as the linear Faber-Jackson relation is
concerned. Dressler’s trend lines for the Faber-Jackson



relation for these two clusters are also indicated in the
figure. He obtained these lines by assuming a constant offset
in magnitude between the two clusters and correcting the
magnitudes of one of the clusters by this offset so as to
superimpose the data points. He then estimated the slope of
the relationship graphically (ignoring the four outliers),
and finally drew a separate median line having that slope for
each cluster.

The solutions reported here were all made with the program
GaussFit (Jefferys, Fitzpatrick, & McArthur, 1988), which
implements the algorithms described in this paper. In each
case, a three-parameter reduction was performed that
estimated the common slope b simultaneously with the values
of a for each of the two clusters. The results are presented
in Table 2. The first solution, which is taken to be the
reference solution, was an orthogonal regression least
squares fit to all the data points excepting the four
outliers identified by Dressler. (In all solutions, the
standard error in the V 26 data was assumed to be ±0.125

magnitudes, and in log σ it was assumed to be ±0.02.) The
parameters of this solution are nearly identical to the ones
Dressler found. The second solution is an orthogonal
regression least squares solution including all 53 data
points. This solution is quite poor, with the parameters
lying between two and three standard deviations away from the
reference solution.

For comparison, a group of similar solutions was run,
omitting in turn the ith data point from the data set, to
produce a set of estimates T n,–i  of each parameter. The rows

marked “minimum” and “maximum” give the minimum and maximum
of the T n,–i  from this sequence of runs, and the row marked

“range” gives the difference between the maximum and minimum
values of T n,–i  . These rows allow one to judge the

sensitivity of the solution to the individual data points.
The largest deviations were found when the outliers were
omitted. Next, pseudovalues P i  for each value of i were

generated in the usual way using the formula
Pi =nTn–(n–1)T n,–i , where T n is the estimate from all the data

points. Finally, Quenouille’s jackknife was applied to the
pseudovalues and a jackknifed estimate of each parameter and
its standard deviation was produced. In this way I obtained
an estimate of the standard deviation of each parameter
estimate using a different method than the usual one
involving the inverse matrix of the normal equations. These
estimates of the standard deviation turned out to be somewhat
larger than the ones estimated from the least squares
solution. The jackknifed estimates of the parameters and



their standard deviations appear in the last two rows of the
orthogonal regression least squares solution.

The standard jackknife is non-robust, and in order to
obtain an impartial robust estimate of the parameters by a
method different from the one advocated in this paper, the
pseudovalues from the orthogonal regression least squares
solution using all data points were subjected to the “trimmed
jackknife” procedure of Hinkley & Wang (1980). See also
Hinkley (1978). Two trimming parameters were used, 5% and 10%
(see column 2). The standard deviations of the resulting
parameter estimates were also calculated using Hinkley &
Wang’s formulas. The resulting estimates were substantially
closer to the reference solution than either the orthogonal
regression least squares or jackknifed orthogonal regression
least squares solutions. They are shown in the third group of
rows in Table 2.

The last three groups of solutions are robustified
orthogonal regression M-estimator solutions using the methods
of this paper. Three different metrics have been used:
Huber’s metric (Eq. 51), Tukey’s biweight (Eq. 52) and the
metric “fair” (Rey, 1983) (Eq. 53). The adjustable parameter
c of each metric was chosen so as to provide an ARE of 0.9 or
0.8, relative to normally distributed data, as shown in the
second column of Table 2.

ρ( u) = 
 

  u

2
,

 
 c(2|u|–c),

if |u| ≤ c
 

if |u| ≥ c
(51)

ρ( u) = 

 

 (c

2
/3)(1–[1–(u/c)

2
]

3
),

 

(c
2

/3),

if | u| ≤ c
 

if |u| ≥ c
(52)

ρ( u) = 2 c
2

[|u|/c–log(1+|u|/c)] (53)

As before, pseudovalues were generated for each of the
solutions, and the standard jackknife was used to estimate
values and, more importantly, the standard deviations for
each robustified solution. The jackknifed solutions are not
much different from the robustified solutions on which they
are based, except in the case of the Tukey metric, for which
a further improvement was evident. In the case of an
asymptotic relative efficiency of 0.8, the jackknifed
solution is indistinguishable from the reference solution.
This improvement is a serendipitous result not related to the
purpose of this paper, since the principal reason for
generating the jackknifed solutions was to estimate the



standard deviations of the parameters, and not to make
further improvements in the parameters themselves.

The Huber and “fair” metrics give results that are
comparable to those of the trimmed jackknife. The Tukey
metric gave even better results due to its stronger
suppression of outliers. Indeed, the Tukey metric for an ARE
of 0.8 gave a result that is nearly as good as the reference
solution.

This example shows that the methods of this paper can
substantially improve parameter estimates when the underlying
data are contaminated by outliers. As it happens, the
outliers in this example are particularly severe as all of
them pull the solution in the same direction, and all are
located so as to exert maximum leverage on the slope of the
Faber-Jackson relation and therefore on all of the estimated
quantities. Despite these difficulties, the algorithm made a
considerable improvement in the result.

11. C ONCLUSIONS

I have described an approach to robust estimation that can
handle the situation when the equations of condition may
contain more than one observation. Several methods to solve
the resulting equations are given, which reduce to a simple
modification of the classical least squares problem. By
adapting existing least squares software, the algorithms have
been implemented straightforwardly on a digital computer.

The methods described in this paper have been tested on a
number of problems, both linear and nonlinear, using real as
well as simulated data. The numerical example given in this
paper, using real data on galaxies, shows that the method can
substantially improve the estimates of the parameters of a
problem when outliers are present.

I find that the iteratively reweighted least squares method
of solution has the most dependable convergence, whereas the
solution by Newton’s method sometimes diverges, probably due
to the smallness of some of the eigenvalues of H. On the
other hand, Newton’s method occasionally converges more
rapidly than iteratively reweighted least squares. Therefore
it is difficult to recommend one method over the other.
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————————————————— —————————————————
Coma Sample Virgo Sample

————————————————— —————————————————
NGC or Dressler NGC or Dressler
IC No. No.  V 26 log σ IC No. No.  V 26 log σ
————————————————— —————————————————
N4839 31 12.60 2.449 N4168 … 11.39 2.242
N4926 49 13.12 2.394 N4239 … 12.53 1.716
I3959 69 14.23 2.285 N4365 … 9.98 2.412
I3957 70 14.86 2.166 N4374 … 9.37 2.480

87 15.88 1.863 N4387 … 12.24 2.059
N4869 105 13.92 2.286 N4406 … 9.20 2.355

107 15.45 1.761 N4434 … 12.17 2.009
N4906 118 14.36 2.209 N4458 … 12.01 1.949
N4898E 120 15.07 2.113 N4464 … 12.50 2.079
N4898W 121 14.07 2.301 N4472 … 8.56 2.474
N4876 124 14.53 2.243 N4473 … 10.28 2.268

125 15.60 2.169 N4478 … 11.28 2.170
N4874 129 12.27 2.383 N4486 … 8.79 2.528
N4872 130 14.36 2.311 N4489 … 12.02 1.778
N4867 133 14.50 2.339 N4551 … 11.92 2.021

136 15.52 2.251 N4552 … 9.95 2.391
I4051 143 13.46 2.361 N4564 … 11.30 2.185
N4889 148 11.85 2.584 N4621 … 9.88 2.338
I4011 150 15.31 2.007 N4636 … 9.82 2.303
N4886 151 13.98 2.180 N4649 … 8.90 2.514

153 15.28 2.099 N4660 … 10.97 2.262
N4864 159 14.26 2.275 N4697 … 9.28 2.276
I4045 168 14.11 2.320 N4742 … 11.37 2.027
I4021 172 14.87 2.191
I4012 174 14.82 2.247

193 15.37 2.059
N4860 194 13.49 2.394

207 15.04 2.154
N4881 217 13.67 2.274
N4841B 240 12.88 2.383

Table 1. Basic data for the numerical example (from Dressler,
1984).



Method ARE What a1 a2 b

Reference
1.0

all but 4 4.14 3.65 -0.132
Solution std.dev. 0.13 0.10 0.009

all 4.65 4.01 -0.169
std. dev 0.19 0.14 0.013
minimum 4.51 3.91 -0.174

ORLS 1.0 maximum 4.73 4.07 -0.159
range 0.21 0.16 0.015

Jackknife 4.65 4.02 -0.169
std. dev. 0.26 0.19 0.019

5%
all 4.53 3.91 -0.159

Trimmed std. dev 0.19 0.14 0.013
Jackknife

10%
all 4.45 3.87 -0.153

std. dev 0.12 0.09 0.009
all 4.49 3.90 -0.158

minimum 4.39 3.84 -0.162

0.9
maximum 4.55 3.95 -0.151

range 0.16 0.12 0.011
Jackknife 4.46 3.88 -0.155

Huber std. dev. 0.23 0.17 0.017
all 4.44 3.88 -0.154

minimum 4.36 3.82 -0.159

0.8
maximum 4.51 3.92 -0.148

range 0.15 0.10 0.011
Jackknife 4.42 3.87 -0.152
std. dev. 0.23 0.16 0.016

all 4.41 3.85 -0.152
minimum 4.27 3.74 -0.158

0.9
maximum 4.50 3.91 -0.141

range 0.24 0.17 0.017
Jackknife 4.32 3.78 -0.145

Tukey std. dev. 0.34 0.24 0.024
all 4.24 3.73 -0.140

minimum 4.18 3.69 -0.145

0.8
maximum 4.32 3.78 -0.135

range 0.14 0.10 0.010
Jackknife 4.12 3.65 -0.131
std. dev. 0.19 0.14 0.014

all 4.51 3.92 -0.159
minimum 4.40 3.85 -0.163

0.9
maximum 4.57 3.96 -0.151

range 0.17 0.11 0.012
Jackknife 4.50 3.92 -0.158

“Fair” std. dev. 0.24 0.17 0.017
all 4.47 3.89 -0.156

minimum 4.38 3.83 -0.160

0.8
maximum 4.54 3.94 -0.150

range 0.16 0.10 0.011
Jackknife 4.48 3.91 -0.157
std. dev. 0.24 0.17 0.017

Table 2. Summary of Results.
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Figure 1
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Figure 1: When ρ( u) = | u|, the loss function is given by
Eq. 10a, and the slope of the line is 1, then there are
infinitely many positions of the fitted point that
correspond to a given observed point. All the points on
the heavily marked segment of the fitted line have the
same distance (in this metric) from the observed point.



Figure 2
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Figure 2: When the slope of the fitted line is less than 1,
the fitted point jumps discontinuously from its
arbitrary position in Figure 1 to the point on the
fitted line that lies vertically above or beneath the
observed point. The slope of the dashed line is unity,
and the solid line is the fitted line.



Figure 3
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Figure 3: When the slope of the fitted line is greater than
1, the fitted point jumps discontinuously to the point
that lies horizontally to the left or right of the
observed point. The dashed and solid lines have the same
meaning as in Figure 2.



Figure 4
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Figure 4: In the metric of Eq. 10b, there is no ambiguity in
the position of the fitted point, which always lies at
the foot of the perpendicular dropped from the observed
point to the fitted line. As the slope of the fitted
line varies, the position of the fitted point varies
continuously.
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Figure 5: Geometry of the circle-fitting problem. The “true”
point lies on the circle of radius R 0at ( X, Y). The

observed point at ( ξ, η) is obtained by adding
independent Gaussian random deviates to each of the ( X,
Y) coordinates of the “true” point. The observed point
is distant from the “true” point by the amount ρ. The

angle ϑ between the line from ( X, Y) to the origin and
the line from ( X, Y) to the observed point is shown.
Because of the curvature of the circle, the observed
points tend to lie outside of the true circle, which
leads to an overestimate b> R 0 of its radius.
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Figure 6: log of velocity dispersion (log σ) plotted against
integrated V magnitude ( V 26) for a sample of galaxies

from two clusters. The four outliers noted by Dressler
are identified by their catalog numbers. After Dressler
(1984), Figure 6.


